Ekushiseni kokuhlanya kokuqala kwe-ChatGPT, ngathola umbhalo ovela kowayesebenza naye. Wayefuna ukwenza umbono ngami. Ehlale ejabulela ukubhebhana, saxhuma ucingo wabe eseqala ngokuthi “Uyakhumbula ukuthi wawuhlale ungicela ukuthi ngikudonselele ama-data? Kuthiwani uma ubungakwenza wena ngokwakho?” Ube eseqhubeka nokunginika umbono wokuthi izinkulungwane (amashumi ezinkulungwane?) zabanye abantu zazicabanga ngesikhathi esifanayo: Ama-LLM angasetshenziselwa umbhalo-kuya-SQL ukusiza abantu abancane bezobuchwepheshe baphendule imibuzo yabo yedatha.
Ngangingene shí kulo mbono, kodwa ngaphambi kokungena ekhanda kuqala, ngatshela uLei (manje oyi-CTO yami) ukuthi kufanele senze ukuqinisekiswa okuthile. Sathintana nabangane kanye nalabo esasisebenza nabo abavela ezimbonini ezihlukahlukene. Kube nentshisekelo eqinile "kukuhlaziya kokuzisiza." Besazi ukuthi kuzoba nzima kakhulu kunalokho obekubukeka, kepha ithuba lizwakala limnandi kakhulu ukuthi singaliyeka. Ngakho-ke mina noLei sasuka e-Shire futhi saqala uhambo lwethu lokudala umbono wethu:
Lokhu okuthunyelwe akuphathelene nomkhiqizo wethu ngokwawo (noma kunjalo, uma ufuna ukwazi, ungafunda kabanzi mayelana nokuthi eminye imibono engezansi yazisa kanjani umsebenzi wethu wakamuva womkhiqizo.
Qaphela: Lolu hambo luntuleka ngokudabukisayo kubathakathi kanye nezimpi ezidumile ze-Middle-earth. 🧙
Ngeke sihlale kokuthi “kungani” isikhathi eside kakhulu. Uma ufunda lokhu, kungenzeka uwele kwelinye lamaqembu amabili:
Ukuziba ukukhathazeka kwendima yabahlaziyi bedatha nososayensi, umqondo we-AI ekwazi konke engaphendula noma yimiphi imibuzo mayelana nedatha yenhlangano uzwakala umuhle. Noma okungenani, kuzwakala kumnandi enhlanganweni nakubaholi bayo bebhizinisi abanobuhlakani bezindlela ezintsha zokubuza imibuzo abunamkhawulo. Le AI ingaba yisixazululo sokudala inhlangano “eqhutshwa yidatha” lapho wonke umholi encike ebufakazini obunamandla ukuze enze izinqumo zabo zamasu. Futhi konke ngengxenyana yezindleko obekuzovame ukuzithatha. Ekugcineni! Izinhlangano zingasebenzisa lawo “mafutha amasha” ezilokhu zizwa ngawo kusukela ngo-2010.
Kepha uma lokhu kuyinkinga ebaluleke kangaka okufanele ixazululwe futhi i-AI isibe yinhle kakhulu, kungani ungekho umkhiqizo oyixazulule kuze kube manje?
Inhlolovo yemboni yakamuva ipenda isithombe esiyinkimbinkimbi sokutholwa kwe-AI ebhizinisini.
Abamukeli be-AI-ikakhulukazi ebhizinisini-banebha ephezulu uma kuziwa kulokho okulindelekile kobuchwepheshe. Kumongo wokuhlaziya idatha kanye nephupho lokuzisiza, silindele ukuthi ithuluzi lethu le-AI:
Ngokudabukisayo, izixazululo eziningi zamanje zisebenzisa uhlaka lwendabuko lwe-monolithic AI, oluvame ukwehluleka ukuhlangabezana nokulindelwe. Eminyakeni embalwa edlule, ithimba le-Fabi.ai kanye nami sasebenza kanzima kulolu daba. Sakhe ama-prototypes ebhizinisi futhi sahlola izinketho eziningi. Ekugcineni, saqaphela ukuthi akukho Retrieval Augment Generation (RAG) noma ukulungisa kahle okungalungisa le nkinga ngohlaka lwamanje lwe-monolithic.
Lapho sihlola le ndlela, izinto ezimbalwa zasicacela:
Ngemuva kokubheka lezi zinkinga, sicabange ukuthi singayenza kanjani i-AI ivumelane nezinkinga. Kulapho ama-agent e-AI aqala khona ukudlala futhi asiqinise lo mqondo.
Emzuzwini lapho sibheka izinhlaka ze-agency, sasazi ukuthi zizoshintsha umdlalo. Ngokungazelelwe saba nomuzwa wokuthi singavumela i-AI inqume ukuthi ingayiphendula kanjani imibuzo. Ingasebenza ngezinyathelo futhi ixazulule ngokwayo. Uma i-AI ibhala umbuzo we-SQL ogeja amanani angenalutho kunkambu ethi "Uhlobo lwe-akhawunti", ingakwazi ukuqalisa umbuzo, ibone iphutha, futhi izilungise yona ngokwayo. Kepha kuthiwani uma singathatha lesi sinyathelo siqhubeke futhi sivumele i-AI ukuthi isebenze kakhulu ePython futhi isebenzise ama-LLM? Manje, i-AI yenza okungaphezu kokudonsa idatha. Ingasebenzisa amaphakheji e-Python noma ama-LLM ukuze uthole izinto eziphuma ngaphandle, amathrendi, noma imininingwane ehlukile, ngokuvamile okuzodingeka uyibheke ngesandla.
Kodwa sasisenenkinga eyodwa: idatha yebhizinisi engcolile. Sikholelwa ukuthi izinhlangano zingaxazulula lokhu ngokusebenzisa izinqubo eziqinile zobunjiniyela bedatha, njenge-a
Njengoba izinkampani zikhula, ziphatha idatha eyengeziwe futhi zinabasebenzisi abaningi. Umbono wemeshi yomenzeli usiza ukulinganisa ukwenza izinqumo okusheshayo nokulawula okudingekayo ekubuseni. Ama-ejenti akhethekile asiza ukubeka imingcele ecacile nezibopho ze-AI ngayinye. Baphinde badale indlela enwebekayo yokuthi ama-ejenti axhumane. Futhi, bangasiza ukuphatha izinsiza ngendlela efanele kuwo wonke amaqembu nezinkampani.
Umqondo we-ejenti ekhethekile ukuthi lo menzeli angakwazi futhi uzophendula kuphela imibuzo kudathasethi echazwe ngokuqinile. Isibonelo, ungakha futhi uqalise i-ejenti ye-AI ephendula imibuzo mayelana nemikhankaso yokumaketha. Noma ungakha enye ukuze uphendule imibuzo mayelana nepayipi lokumaketha, njalo njalo njalo.
Kukhona iphutha elilodwa kuphela: Abasebenzisi badinga ukwazi ukuthi iyiphi i-ejenti okufanele baye kuyo kumuphi umbuzo. Kufana nokudinga ukwazi umhlaziyi wezokuthengisa olungile ukuze abuze umbuzo wokuqhathanisa nokubuza nje umbuzo ojwayelekile. Ngombuzo ojwayelekile, othile eqenjini angawuqondisa kumuntu ofanele. Yilapho umqondo "we-agent mesh" ungena khona.
Uma umenzeli oyedwa ekwazi ukuphendula imibuzo eqondene nesizinda ngokuthembekile, kungani-ke ungavumeli ama-ejenti akhulume ngomunye nomunye? Kungani, isibonelo, i-ejenti yomkhankaso wokumaketha ingakwazi ukubuza i-ejenti yamapayipi ngokuqondile uma ikwazi ukuphendula umbuzo kalula? Sikholelwa ukuthi kufanele ikwazi. Eqinisweni, sicabanga ukuthi esikhathini esizayo kuzoba namanethiwekhi ama-agent anesakhiwo se-hierarchical. Ungathatha isithombe “kumenzeli we-GTM” obiza “i-ejenti yokumaketha.” Lo menzeli ube esebiza kokubili “umenzeli wepayipi” kanye “Ne-ejenti yomkhankaso wokumaketha.”
Lo mbono ufana nombono ojwayelekile ozungeza i-AI owaziwa ngokuthi "
Le ndlela ye-mesh inikeza izinzuzo ezimbalwa ezibalulekile ngaphezu kwe-monolithic AI (kusendlalelo se-pristine semantic):
Ekupheleni kosuku, lo mbono we-mesh awuyona inoveli. Lokhu kufaka izibuko umqondo wengxube yochwepheshe ekhonjiswe ukuthuthukisa ukunemba kwama-LLM. Kumane kuthathe lowo mbono ofanayo futhi ulethe kubasebenzeli be-AI.
Kwa-Fabi.ai, luselude ukhalo okufanele siluhambe njengoba sakha i-Analyst Agent mesh. Kodwa, sesivele sizinqobile ezinye zezinselele ezinkulu zengqalasizinda yezobuchwepheshe.
Ama-ejenti womhlaziyi wedatha we-AI adinga ukwakheka okuhlukile. Lo mklamo kufanele ubavumele ukuthi basebenzise i-Python noma i-LLM ukuze baphendule imibuzo, bahlale bevumelanisa nemithombo yedatha, futhi bangene ezinkundleni ezihlanganyelwe, kuyilapho zisahlezi zivikelekile futhi zinyuka. I-ejenti ngayinye idinga ukusebenza nge-Python kernel yayo, edinga ukuphothwa ngokushesha phezulu noma phansi ukuze kuncishiswe izindleko futhi ihlale ivunyelaniswa nedatha yomthombo.
Izakhiwo ezingahlinzeki ngezinhlamvu ezingazodwana kumenzeli ngamunye zingangena kweyodwa yalezi zingozi ezilandelayo:
Inselele yokwakha lolu hlobo lwenkundla iyinselelo ye-AI njengoba kuyinselelo ye-DevOps.
Njengoba izinkampani zamabhizinisi zilawula izinhlelo zokusebenza eziningi ze-AI ekusebenzeni kwazo, zidinga izindlela ezikhethekile nezilawulwa kahle. Uhlaka lwemeshi yomenzeli lusebenzisa ama-ejenti wedatha we-AI akhethekile njengendlela yokukala i-AI ekuhlaziyeni idatha. Le ndlela igcina ukuphepha, ukwethembeka, nokusebenza kuqinile.
Besingahle silindele ukuthi i-AI ibe yonke indawo manje, iphendula imibuzo eminingi yedatha. Kodwa, uma sibhekisisa kahle, inqubekelaphambili eminyakeni emibili nje selokhu kwethulwa i-ChatGPT iyamangalisa. Kusekuningi okumele sikufunde kulolu hambo. Emqondweni wami, nokho, ama-ejenti kanye nezinhlaka ze-agent mesh kuzoba ukhiye ebhizinisini le-AI.