Uninzi lweenkcazo zeearhente ze-AI kunye neenkqubo ze-arhente zijolise kubuchule bee-arhente ukwenza ngokuzimeleyo, ngaphandle kokungenelela komsebenzisi, kwiimeko ezininzi kwiimeko zokusetyenziswa ezijoliswe kwii-arhente. Ezinye ii-arhente zisebenza ngemodeli yomntu-in-the-loop, zibandakanya umsebenzisi kuphela xa ehlangabezana nokungaqiniseki, kodwa zisebenza ngokuzimeleyo phantsi kweemeko eziqhelekileyo kunye neemeko ezithile.
Ngokuzimela njengophawu oluphambili oluchazayo lweearhente ze-AI, kukho amandla axhasayo afunwa ziiarhente ukuze enze ngokuzimeleyo kwigalelo lomsebenzisi. Kwi
Ubunakho kunye nokufikelela - Ukukwazi ukwenza egameni lomsebenzisi, kubandakanywa iimvume kunye nokufikelela okuqinisekisiweyo kwiinkqubo ezifanelekileyo.
Ukuqiqa nokucwangcisa - Ukusebenzisa ingqiqo ukwenza izigqibo ngaphakathi kwenkqubo yokucinga ehleliweyo-ehlala ichazwa njengekhonkco, umthi, igrafu, okanye i-algorithm-ekhokela izenzo ze-arhente.
I-orchestration yecandelo - Ulungelelwaniso lwamacandelo amaninzi, kubandakanywa i-prompts, ii-LLMs, imithombo yedatha ekhoyo, umxholo, imemori, imbali, kunye nokuphunyezwa kunye nobume bezenzo ezinokubakho.
I-Guardrails - Iinkqubo zokugcina i-arhente igxininise kwaye isebenzayo, kubandakanywa izikhuselo zokukhusela iimpazamo okanye ukubonelela ngolwazi oluluncedo lokuxilongwa kwimeko yokusilela.
Imfuno nganye kwezi zine ineemfuno ezahlukeneyo zeziseko zophuhliso. Ukufumana amandla kunye nokufikelela, iimfuno eziphambili kukudibanisa isoftware kunye nolawulo lobungqina. Ukuqiqa nokucwangcisa zixhaswa ikakhulu ziiLLMs kunye nezinye iimodeli ze-AI. Isihloko se-guardrails sikhulu kwaye sihlala sithe ngqo kumatyala osetyenziso abandakanyekayo, ke siya kuyigcinela inqaku elizayo. Apha, ndingathanda ukugxila kwiokhestra, kunye neziseko ezingundoqo ezifunekayo ukuxhasa iokhestra ekrelekrele kwinani elikhulu leenxalenye ezihambayo kunye nembali ende yedatha kunye nomxholo onokuthi ufuneke ngexesha lesigqibo.
Ukucinga ukuba ezi mfuno zimbini zokuqala zingasentla-kubandakanywa isakhono, ukufikelela, ukuqiqa, kunye nokucwangcisa-zisebenza njengoko kucetywayo, owona mngeni uphambili weokhestra yecandelo uxhomekeke kulawulo lolwazi. Inkqubo ye-agent kufuneka igcine ulwazi kumanqanaba ahlukeneyo: imisebenzi ephambili kunye neenjongo zayo, imeko yeenkqubo ezahlukeneyo ezifanelekileyo, imbali yokusebenzisana nomsebenzisi kunye nezinye iinkqubo zangaphandle, kunye nokunye okuninzi.
Nge-LLMs, sisebenzisa ingcamango "yefestile yomxholo" ukuchaza isethi yolwazi olukhoyo kumzekelo, ngokubanzi ngexesha elikhawulezayo. Oku kwahlukile kulwazi oluqulethwe kwi-prompt ngokwayo kwaye kwahlukile kulwazi lwangaphakathi lwe-LLM olwathi lwaqulunqwa ngexesha lenkqubo yoqeqesho lomfuziselo.
Kwimibhalo emide, iifestile zeemeko zinokucingelwa "njengembali yamva nje" yolwazi olukhoyo kwi-LLM ngexesha elikhawulezayo-oku kucacile kwi-architecture ye-LLM kunye nokukhuthaza. Ngaloo ndlela, uninzi lwe-LLM lunombono onecala elinye lomxholo, kwaye umxholo omdala uvele uphume efestileni ekuhambeni kwexesha.
Iiarhente zidinga inkqubo eyinkimbinkimbi yokulawula umxholo kunye nolwazi, ukwenzela ukuba kuqinisekiswe ukuba eyona nto ibalulekileyo okanye ingxamisekileyo umxholo wenziwa kuqala, nanini na xa i-arhente ifuna ukwenza isigqibo. Esikhundleni somxholo omnye we-monolithic, ii-arhente ze-AI kufuneka zilandele iindidi ezahlukeneyo zomxholo kumanqanaba ahlukeneyo okubaluleka.
Oku kunokufaniswa nememori kwiinkqubo zekhompyutheni, apho iintlobo ezahlukeneyo zokugcina-i-cache, i-RAM, kunye ne-hard drives-zikhonza iinjongo ezahlukeneyo ngokusekelwe ekufikelelekeni kunye nokuphindaphinda kokusetyenziswa. Kwiiarhente ze-AI, sinokwenza ngokwengqiqo umxholo ube ngamanqanaba amathathu aphambili:
Umxholo ophambili - Uluhlu lomsebenzi ongundoqo we-arhente okanye iinjongo. Oku kufuneka kuhlale kuphezulu kwengqondo, kukhokela zonke izenzo.
Umxholo othe ngqo -Imeko yeenkqubo eziqhagamsheleneyo, ezifanelekileyo kunye nokusingqongileyo okusondeleyo, kubandakanywa izixhobo ezifana neenkqubo zokuthumela imiyalezo, ukutya kwedatha, ii-APIs ezibalulekileyo, okanye i-imeyile yomsebenzisi kunye neekhalenda.
Umxholo wangaphandle - Ulwazi ngokubanzi, okanye naluphi na ulwazi olunokuba lufanelekile, kodwa olungacwangciswanga ngokucacileyo ukuba lube yinxalenye ephambili yenkqubo ye-arhente. Umxholo wangaphandle unokubonelelwa yinto elula njengokukhangela kwi-intanethi okanye kwiWikipedia. Okanye, kunokungxamiseka kwaye kube nzima, njengezinto ezingalindelekanga ezivela kwiindaba zomntu wesithathu okanye uhlaziyo, ezifuna ukuba iarhente ilungelelanise izenzo zayo ngamandla.
La manqanaba omxholo akaqinisekanga, imigca ephakathi kwayo ingaba mfiliba kakhulu, kwaye kukho ezinye iindlela eziluncedo zokuchaza iintlobo zomxholo-kodwa le ngcamango yesakhiwo iluncedo kwingxoxo yethu apha.
Iimfuno zokugcina zee-arhente ze-AI ziyahluka ngokuxhomekeke kuhlobo lomxholo olawulwayo. Inqanaba ngalinye-eliphambili, elithe ngqo kunye nangaphandle-lifuna izakhiwo zedatha ezahlukeneyo, iindlela zokubuyisela, kunye nokuhlaziywa rhoqo. Umceli mngeni ophambili kukuqinisekisa ukufikelela okusebenzayo, ukuzingisa kwexesha elide, kunye nohlaziyo oluguquguqukayo ngaphandle kokulayisha kakhulu umbhobho wokusetyenzwa kwearhente.
Kunokuba uphathe umxholo njengequmrhu le-monolithic, ii-arhente ze-AI zixhamla kwi-architecture yogcino oluxutyiweyo oludibanisa iimodeli zedatha ezicwangcisiweyo nezingalungiswanga. Oku kuvumela ukukhangelwa okukhawulezayo, ukufunyanwa kwe-semantic, kunye nokuzingisa okukhawulezileyo, ukuqinisekisa ukuba umxholo ofanelekileyo uyafumaneka xa kufuneka ngelixa kuncitshiswa ukusetyenzwa kwedatha okungafunekiyo.
Umxholo ophambili uquka iinjongo eziphambili ze-arhente kunye nemisebenzi esebenzayo-isiseko esiqhuba ukuthathwa kwezigqibo. Olu lwazi kufuneka luzingise, lucwangciseke kakhulu, kwaye lubuze lula, njengoko lukhokela zonke iintshukumo zearhente.
Iimfuno ezinokubakho zokugcina:
Ukuphunyezwa kwe-arhente yomzekelo
Umncedisi ocwangcisayo olawula umgca womsebenzi kufuneka agcine:
Ivenkile yedatha esasazwayo, efumaneka kakhulu iqinisekisa ukuba imisebenzi ilandelwa ngokuthembekileyo, njengokuba i-arhente iqhuba iziganeko ezitsha kunye nokuhlaziywa kweemeko.
Umxholo othe ngqo uquka imeko yangoku yeenkqubo ezifanelekileyo-iikhalenda, iiplatifomu zemiyalezo, ii-API, ii-database, kunye neminye imithombo yedatha yexesha langempela. Ngokungafaniyo nomxholo oyintloko, umxholo othe ngqo uyaguquguquka kwaye kaninzi ufuna indibaniselwano yezisombululo ezicwangcisiweyo kunye nexesha langempela lokugcina.
Iimfuno ezinokubakho zokugcina:
Uzalisekiso lwe-arhente yomzekelo:
I-arhente yenkxaso ye-AI elandelela unxibelelwano lomsebenzisi kufuneka igcine:
Ngokuqulunqa ukugcinwa komxholo othe ngqo kunye nendibaniselwano yokugcinwa kwedatha yexesha elide kunye nexesha elide, ii-arhente ze-AI zingenza ngokuqaphela okusingqongileyo ngaphandle kokubambezeleka okugqithisileyo.
Umxholo wangaphandle uquka ulwazi oluphangaleleyo kunye nohlaziyo olungalindelekanga oluvela kwimithombo engaphandle kolawulo lwangoko lomenzeli. Oku kunokususela kwimibuzo yokukhangela kwimfuno ukuya kwidatha yangaphandle eguquguqukayo, efuna indlela eguquguqukayo yokugcina nokubuyisela. Ngokungafani neemeko eziphambili kunye nezithe ngqo, ezidityaniswe ngokusondeleyo kwimisebenzi eqhubekayo ye-arhente kunye neenkqubo ezidibeneyo, umxholo wangaphandle uhlala ungacwangciswanga, ukhulu, kwaye uguquguquka kakhulu.
Imiba yogcino olunokwenzeka:
Uzalisekiso lwe-arhente yomzekelo:
Umncedisi wobuqu ohlanganisa ingxelo malunga nenzululwazi yamva nje efunyenwe kuphando lokutshintsha kwemozulu kufuneka:
Ngokucwangcisa ukugcinwa kweemeko zangaphandle malunga nokubuyiswa ngokukhawuleza kunye nentlangano ye-semantic, ii-arhente ze-AI zinokuziqhelanisa ngokuqhubekayo nolwazi olutsha ngelixa ziqinisekisa ukuba idatha efunyenweyo ihlala ifanelekile, ithembekile, kwaye iyasebenza.
Ukuyila ii-arhente ze-AI eziqondayo zifuna ulungelelwaniso olucokisekileyo phakathi kokufikelela ngokufanelekileyo kulwazi olubalulekileyo kunye nokuphepha imemori okanye ukulayisha ngaphezulu. Iiarhente ze-AI kufuneka zithathe isigqibo sokuba zigcinwe nini, zibuyiselwe nini, kwaye ziqhube umxholo ngokuguquguqukayo ukuze kunyuswe ukwenziwa kwezigqibo.
Uyilo lokugcinwa kwe-hybrid-ukudibanisa ukuthengiselana, i-vector, uchungechunge lwexesha, kunye neemodeli eziqhutywe kwisiganeko-ivumela ii-arhente ze-AI ukuba zigcine ukuphikelela komxholo, ukubuyisela ukusebenza kakuhle, kunye nobukrelekrele obuguquguqukayo, konke oku kubalulekile kukuzimela kwinqanaba. Ukufezekisa le bhalansi kufuna izicwangciso ezicwangcisiweyo kuzo zonke iinkalo ezintathu eziphambili:
Ukubambezeleka ngokuchasene nokuzingisa - Iimeko ezifikelelwa rhoqo (umzekelo, iindawo zemisebenzi esebenzayo) kufuneka zihlale kwindawo yokugcina ixesha elide, ngelixa ulwazi olungafuneki kangako kodwa oluyimfuneko (umzekelo, ukusebenzisana kwembali) kufuneka lufunyanwe ngokufunwa kugcino lwexesha elide.
Ulwakhiwo ngokuchasene nedatha engacwangciswanga - Imisebenzi, iinjongo, kunye nenkqubo yelizwe ixhamla kugcino olucwangcisiweyo (umzekelo, ixabiso eliphambili okanye ugcino lweenkcukacha zamaxwebhu), ngelixa ukufunyaniswa kolwazi olubanzi kufuna ukulungiswa okungacwangciswanga kunye nobudlelwane begrafu ukuze ubambe umxholo ngokufanelekileyo.
Ixesha lokwenyani xa lithelekiswa nokwazisa ngokwembali - Eminye imixholo ifuna ukubekwa esweni okuqhubekayo (umzekelo, iimpendulo eziphilileyo ze-API), kanti ezinye (umzekelo, izigqibo zangaphambili okanye iingxelo) kufuneka zithathwe kuphela xa zifanelekile kumsebenzi wangoku we-arhente.
Ukunikezelwa kwezi ntlobo ezahlukeneyo zeemeko, ii-arhente ze-AI zifuna indlela ecwangcisiweyo yokugcina nokufikelela kulwazi. Ukuthembela kuphela kwiifestile ze-LLM akusebenzi, njengoko kunciphisa amandla e-arhente ukulandelela ukusebenzisana kwexesha elide kunye neemeko eziguqukayo. Endaweni yoko, umxholo kufuneka ngokuzingileyo ugcinwe, ufunyanwe ngamandla, kwaye ubekwe phambili ngokusekwe kukufaneleka kunye nokungxamiseka.
Ngokwesiqhelo, iimodeli zememori ezinamanqanaba amaninzi adibanisa i-cache yexesha elifutshane, i-database eqhubekayo, kunye neendlela zokubuyisela zangaphandle ziyafuneka kwi-architecture ye-arhente ye-AI. Ngokusebenzisa indlela yokugcina edibeneyo, iiarhente ze-AI zinoku:
Ngokudibanisa ezi zicwangciso zokugcina, ii-arhente ze-AI zinokusebenza ngokuzimeleyo, zigcine ulwazi lomxholo kwixesha elide, kwaye ziphendule ngokuguquguqukayo kulwazi olutsha-ukubeka isiseko seenkqubo ezikrelekrele ngokwenene kunye ne-scalable arhente.
Ukuphumeza i-architecture yokugcinwa kwe-hybridi yee-arhente ze-AI kufuna ukukhetha i-database efanelekileyo kunye nezixhobo zokugcina ukusingatha iintlobo ezahlukeneyo zeemeko ngokufanelekileyo. Olona khetho lungcono luxhomekeke kwizinto ezifana neemfuno zokulinda, ukukala, ukuhambelana kwesakhiwo sedatha, kunye neendlela zokubuyisela.
Inkqubo yokugcina i-arhente ye-AI eyilwe kakuhle ibandakanya:
Makhe sihlolisise inkalo nganye kwezi.
Ii-arhente ze-AI zifuna i-scalable, i-database yentengiselwano ekhoyo kakhulu yokugcina imisebenzi, iinjongo, kunye nemethadatha eyakhiwe ngokuthembekileyo. Ezi nkcukacha zedatha ziqinisekisa ukuba umxholo ophambili uhlala ufumaneka kwaye unemibuzo ngokufanelekileyo.
Ukubeka iliso kwinkqubo yexesha lokwenyani, iiarhente ze-AI zifuna ugcino-lwazi olulungiselelwe ukugawulwa kwemithi, ukulandelwa kwesiganeko, kunye nokuzingisa korhulumente.
Iiarhente ze-AI ezisebenza ngolwazi olungacwangciswanga zifuna iindlela ezisebenzayo zokugcina, ukukhangela, kunye nokubuyisela okuzinzisiweyo kwimisebenzi efana nokukhangela kwe-semantic, ukuthelekisa ukufana, kunye ne-retrieval-augmented generation (RAG). Inkqubo yokukhangela i-vector eyenziwe kakuhle yenza ukuba ii-arhente zikhumbule unxibelelwano olufanelekileyo lwangaphambili, amaxwebhu, okanye iinyani ngaphandle kokulayisha kakhulu kwimemori okanye iifestile zeemeko.
Iiarhente ze-AI zifuna ukufikelela okuphantsi kwe-latency kumxholo osetyenziswa rhoqo, okwenza i-caching ibe yinxalenye ebalulekileyo ye-hybrid storage architectures.
Ngokudibanisa ezi zisombululo zahlukeneyo zokugcina, iiarhente ze-AI zinokulawula ngokufanelekileyo inkumbulo yexesha elifutshane, ulwazi oluqhubekayo, kunye nohlaziyo lwexesha lokwenyani, ukuqinisekisa ukuthathwa kwezigqibo ezingenamthungo kwinqanaba. Ukudityaniswa kwedatha yentengiselwano, ukugcinwa kwexesha, ukukhangela i-vector, kunye ne-caching ivumela ii-agent ukuba zilungelelanise isantya, i-scalability, kunye nokwaziswa komxholo, ukulungelelanisa ngokuguquguqukayo kwigalelo elitsha.
Njengoko izicelo eziqhutywa yi-AI ziqhubeka nokuvela, ukukhetha i-architecture efanelekileyo yokugcina i-hybrid iya kuba yinto ebalulekileyo ekwenzeni ukuzimela, ukusabela, kunye neenkqubo ezihlakaniphile ze-arhente ezinokusebenza ngokuthembekileyo kwiimeko ezinzima kunye nezihlala zitshintsha.
Njengoko iinkqubo ze-AI zikhula nzima ngakumbi, i-database ye-hybridi iya kuba yinto ebalulekileyo yokulawula imemori yexesha elifutshane kunye nexesha elide, idatha ehleliweyo kunye neyokungacwangciswanga, kunye nexesha lokwenyani kunye nokuqonda kwembali. Ukuqhubela phambili kwi-retrieval-augmented generation (RAG), i-semantic indexing, kunye ne-inference yokusabalalisa yenza i-AI agents zisebenze ngakumbi, zihlakaniphile, kwaye ziguquguquke. Iiarhente ze-AI zexesha elizayo ziya kuthembela kugcino olukhawulezayo, olunokwehla, kunye nokuqonda umxholo ukuze kugcinwe ukuqhubeka nokwenza izigqibo ezinolwazi ngokuhamba kwexesha.
Iiarhente ze-AI zidinga izisombululo zokugcina ezilawula ngokufanelekileyo iintlobo ezahlukeneyo zomxholo ngelixa uqinisekisa isantya, ukulinganisa, kunye nokuqina. I-database ye-Hybrid inikezela ngeyona nto ingcono yehlabathi-idatha ekhawulezayo ehleliweyo kunye nokubuyiswa kweemeko ezinzulu-ezenza zibe sisiseko kwiinkqubo ezikrelekrele ze-AI. Baxhasa ukukhangela okusekwe kwi-vector kugcino lolwazi lwexesha elide, ukujongwa okuphantsi kwe-latency transactional, uhlaziyo lwexesha lokwenyani oluqhutywa yisiganeko, kunye nokusabalalisa i-scalability yokunyamezela impazamo.
Ukuxhasa iiarhente ezikrelekrele ze-AI, abaphuhlisi kufuneka bayile izakhiwo zokugcina ezidibanisa iimodeli ezininzi zedatha zolawulo lweemeko ezingenamthungo:
Ukukhangela kweVector kunye nedatha yekholomu - gcina umxholo we-semantic ecaleni kwemethadatha ecwangcisiweyo yokufumana ngokukhawuleza
Ukuhamba komsebenzi okuqhutywa ngumsitho - ukusasaza uhlaziyo lwexesha langempela ukugcina iiarhente ze-AI zisazi ngokutshintsha kwedatha
Ubungakanani behlabathi kunye nokomelela - ukusasaza kwiinethiwekhi ezisasaziweyo zokufumaneka okuphezulu kunye nokunyamezela iimpazamo
Ngokudibanisa ukusetyenzwa kwentengiselwano, ukukhangela i-vector, kunye nohlaziyo lwexesha lokwenyani,
Ibhalwe nguBrian Godsey, DataStax