New Story

TnT-LLM: LLMs for Automated Text Taxonomy and Classification

by Language Models (dot tech)April 18th, 2025
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This paper presents TnT-LLM, a framework leveraging LLMs to automate large-scale text analysis, including label generation and efficient classifier training.

People Mentioned

Mention Thumbnail
featured image - TnT-LLM: LLMs for Automated Text Taxonomy and Classification
Language Models (dot tech) HackerNoon profile picture
0-item

Abstract and 1 Introduction

2 Related Work

3 Method and 3.1 Phase 1: Taxonomy Generation

3.2 Phase 2: LLM-Augmented Text Classification

4 Evaluation Suite and 4.1 Phase 1 Evaluation Strategies

4.2 Phase 2 Evaluation Strategies

5 Experiments and 5.1 Data

5.2 Taxonomy Generation

5.3 LLM-Augmented Text Classification

5.4 Summary of Findings and Suggestions

6 Discussion and Future Work, and References

A. Taxonomies

B. Additional Results

C. Implementation Details

D. Prompt Templates

3.2 Phase 2: LLM-Augmented Text Classification

After the taxonomy is finalized, we next train a text classifier that can be reliably deployed to perform label assignments at very large-scale and in real-time. Following recent work that shows the strengths of LLMs as annotators of training data [8, 15], we propose to leverage LLMs to obtain a “pseudo-labeled” corpus set


Figure 3: An illustration of the LLM-augmented text classification phase (Phase 2).


using the taxonomy yielded in Phase 1, then use these labels to train more efficient classifiers at scale. Specifically, we prompt an LLM to infer the primary label (as a multiclass classification task) and all applicable labels (as a multilabel classification task) on a “medium-to-large” scale corpus sample that covers the range of labels in the taxonomy, creating a representative training dataset that can be used to build a lightweight classifier, such as a Logistic Regression model or a Multilayer Perceptron classifier. In this way, we can induce “pseudo labels” from the LLM classifier and transfer its knowledge to a more efficient and manageable model that can be deployed and served at scale. An illustrative figure of this phase is presented in Figure 3.


This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.

Authors:

(1) Mengting Wan, Microsoft Corporation and Microsoft Corporation;

(2) Tara Safavi (Corresponding authors), Microsoft Corporation;

(3) Sujay Kumar Jauhar, Microsoft Corporation;

(4) Yujin Kim, Microsoft Corporation;

(5) Scott Counts, Microsoft Corporation;

(6) Jennifer Neville, Microsoft Corporation;

(7) Siddharth Suri, Microsoft Corporation;

(8) Chirag Shah, University of Washington and Work done while working at Microsoft;

(9) Ryen W. White, Microsoft Corporation;

(10) Longqi Yang, Microsoft Corporation;

(11) Reid Andersen, Microsoft Corporation;

(12) Georg Buscher, Microsoft Corporation;

(13) Dhruv Joshi, Microsoft Corporation;

(14) Nagu Rangan, Microsoft Corporation.


Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks