paint-brush
د اپاچي سی تونل زیټا انجن د سرچینې کوډ تحلیل (درېمه برخه): د سرور اړخ کاري سپارللخوا@williamguo
455 لوستل
455 لوستل

د اپاچي سی تونل زیټا انجن د سرچینې کوډ تحلیل (درېمه برخه): د سرور اړخ کاري سپارل

لخوا William Guo115m2024/09/20
Read on Terminal Reader

ډېر اوږد؛ لوستل

دا ځل، دا د سرور-سایډ ټاسک سپارلو پروسې په اړه دی.
featured image - د اپاچي سی تونل زیټا انجن د سرچینې کوډ تحلیل (درېمه برخه): د سرور اړخ کاري سپارل
William Guo HackerNoon profile picture

دا د لړۍ مقالو وروستۍ برخه ده چې د اپاچي سی تونل زیټا انجن تحلیل کولو لپاره د سرچینې کوډ؛ د بشپړ عکس ترلاسه کولو لپاره پخوانۍ لړۍ بیاکتنه وکړئ:


راځئ چې هغه برخې بیاکتنه وکړو چې د سرور له پیل وروسته اجرا کیږي:

  • همغږي کوونکي خدمت : یوازې په ماسټر / سټینډ بای نوډونو کې فعال شوی، د کلستر حالت ته غوږ نیسي، او د ماسټر سټینډ بای ناکامۍ اداره کوي.
  • SlotService : د کارګر نوډونو کې فعال شوی، په وخت سره د خپل وضعیت ماسټر ته راپور ورکوي.
  • TaskExecutionService : د کارګر نوډونو کې فعال شوی، په دوره توګه IMAP ته د کاري میټریک تازه کوي.


کله چې د کلستر لخوا کومه دنده ترلاسه نه شي، دا برخې پرمخ ځي. په هرصورت، کله چې یو پیرودونکی د SeaTunnelSubmitJobCodec پیغام سرور ته واستوي، سرور دا څنګه اداره کوي؟

د پیغام استقبال

څرنګه چې مراجع او سرور په مختلفو ماشینونو کې دي، د میتود زنګونه نشي کارول کیدی؛ پرځای یې، د پیغام لیږد کارول کیږي. د پیغام په ترلاسه کولو سره، سرور دا څنګه پروسس کوي؟


لومړی، پیرودونکي د SeaTunnelSubmitJobCodec ډول پیغام لیږي:

 // Client code ClientMessage request = SeaTunnelSubmitJobCodec.encodeRequest( jobImmutableInformation.getJobId(), seaTunnelHazelcastClient .getSerializationService() .toData(jobImmutableInformation), jobImmutableInformation.isStartWithSavePoint()); PassiveCompletableFuture<Void> submitJobFuture = seaTunnelHazelcastClient.requestOnMasterAndGetCompletableFuture(request);

د SeaTunnelSubmitJobCodec ټولګي کې، دا د SeaTunnelMessageTaskFactoryProvider ټولګي سره تړاو لري، کوم چې د پیغام ډولونه MessageTask ټولګیو ته نقشه کوي. SeaTunnelSubmitJobCodec لپاره، دا د SubmitJobTask ټولګي ته نقشه ورکوي:


 private final Int2ObjectHashMap<MessageTaskFactory> factories = new Int2ObjectHashMap<>(60); private void initFactories() { factories.put( SeaTunnelPrintMessageCodec.REQUEST_MESSAGE_TYPE, (clientMessage, connection) -> new PrintMessageTask(clientMessage, node, connection)); factories.put( SeaTunnelSubmitJobCodec.REQUEST_MESSAGE_TYPE, (clientMessage, connection) -> new SubmitJobTask(clientMessage, node, connection)); ..... }


کله چې د SubmitJobTask ټولګي معاینه کوي، دا د SubmitJobOperation ټولګي غوښتنه کوي:

 @Override protected Operation prepareOperation() { return new SubmitJobOperation( parameters.jobId, parameters.jobImmutableInformation, parameters.isStartWithSavePoint); }


د SubmitJobOperation ټولګي کې، د دندې معلومات د دې submitJob میتود له لارې CoordinatorService برخې ته سپارل کیږي:

 @Override protected PassiveCompletableFuture<?> doRun() throws Exception { SeaTunnelServer seaTunnelServer = getService(); return seaTunnelServer .getCoordinatorService() .submitJob(jobId, jobImmutableInformation, isStartWithSavePoint); }

پدې مرحله کې ، د پیرودونکي پیغام په مؤثره توګه سرور ته د میتود غوښتنې لپاره سپارل کیږي. د عملیاتو نور ډولونه په ورته ډول تعقیب کیدی شي.

همغږي کوونکي خدمت

بیا، راځئ وګورو چې CoordinatorService څنګه د دندې سپارلو اداره کوي:

 public PassiveCompletableFuture<Void> submitJob( long jobId, Data jobImmutableInformation, boolean isStartWithSavePoint) { CompletableFuture<Void> jobSubmitFuture = new CompletableFuture<>(); // First, check if a job with the same ID already exists if (getJobMaster(jobId) != null) { logger.warning( String.format( "The job %s is currently running; no need to submit again.", jobId)); jobSubmitFuture.complete(null); return new PassiveCompletableFuture<>(jobSubmitFuture); } // Initialize JobMaster object JobMaster jobMaster = new JobMaster( jobImmutableInformation, this.nodeEngine, executorService, getResourceManager(), getJobHistoryService(), runningJobStateIMap, runningJobStateTimestampsIMap, ownedSlotProfilesIMap, runningJobInfoIMap, metricsImap, engineConfig, seaTunnelServer); executorService.submit( () -> { try { // Ensure no duplicate tasks with the same ID if (!isStartWithSavePoint && getJobHistoryService().getJobMetrics(jobId) != null) { throw new JobException( String.format( "The job id %s has already been submitted and is not starting with a savepoint.", jobId)); } // Add task info to IMAP runningJobInfoIMap.put( jobId, new JobInfo(System.currentTimeMillis(), jobImmutableInformation)); runningJobMasterMap.put(jobId, jobMaster); // Initialize JobMaster jobMaster.init( runningJobInfoIMap.get(jobId).getInitializationTimestamp(), false); // Task creation successful jobSubmitFuture.complete(null); } catch (Throwable e) { String errorMsg = ExceptionUtils.getMessage(e); logger.severe(String.format("submit job %s error %s ", jobId, errorMsg)); jobSubmitFuture.completeExceptionally(new JobException(errorMsg)); } if (!jobSubmitFuture.isCompletedExceptionally()) { // Start job execution try { jobMaster.run(); } finally { // Remove jobMaster from map if not cancelled if (!jobMaster.getJobMasterCompleteFuture().isCancelled()) { runningJobMasterMap.remove(jobId); } } } else { runningJobInfoIMap.remove(jobId); runningJobMasterMap.remove(jobId); } }); return new PassiveCompletableFuture<>(jobSubmitFuture); }

په سرور کې، د انفرادي دندې اداره کولو لپاره JobMaster اعتراض رامینځته شوی. د JobMaster جوړولو په جریان کې، دا د getResourceManager() له لارې د سرچینې مدیر او getJobHistoryService() له لارې د دندې تاریخ معلومات ترلاسه کوي. jobHistoryService په پیل کې پیل کیږي، پداسې حال کې چې ResourceManager د لومړي دندې سپارلو کې په سستۍ سره ډک شوی:

 /** Lazy load for resource manager */ public ResourceManager getResourceManager() { if (resourceManager == null) { synchronized (this) { if (resourceManager == null) { ResourceManager manager = new ResourceManagerFactory(nodeEngine, engineConfig) .getResourceManager(); manager.init(); resourceManager = manager; } } } return resourceManager; }

د سرچینې مدیر

اوس مهال، SeaTunnel یوازې د استیناف ګمارنې ملاتړ کوي. کله چې ResourceManager پیل کول، دا ټول کلستر نوډونه راټولوي او د نوډ معلوماتو ترلاسه کولو لپاره SyncWorkerProfileOperation لیږي، د داخلي registerWorker حالت تازه کوي:

 @Override public void init() { log.info("Init ResourceManager"); initWorker(); } private void initWorker() { log.info("initWorker... "); List<Address> aliveNode = nodeEngine.getClusterService().getMembers().stream() .map(Member::getAddress) .collect(Collectors.toList()); log.info("init live nodes: {}", aliveNode); List<CompletableFuture<Void>> futures = aliveNode.stream() .map( node -> sendToMember(new SyncWorkerProfileOperation(), node) .thenAccept( p -> { if (p != null) { registerWorker.put( node, (WorkerProfile) p); log.info( "received new worker register: " + ((WorkerProfile) p) .getAddress()); } })) .collect(Collectors.toList()); futures.forEach(CompletableFuture::join); log.info("registerWorker: {}", registerWorker); }

مخکې، موږ ولیدل چې SlotService په دوره توګه د هر نوډ څخه ماسټر ته د زړه ضربان پیغامونه لیږي. د دې زړه وهلو په ترلاسه کولو سره، د ResourceManager په خپل داخلي حالت کې د نوډ حالت تازه کوي.


 @Override public void heartbeat(WorkerProfile workerProfile) { if (!registerWorker.containsKey(workerProfile.getAddress())) { log.info("received new worker register: " + workerProfile.getAddress()); sendToMember(new ResetResourceOperation(), workerProfile.getAddress()).join(); } else { log.debug("received worker heartbeat from: " + workerProfile.getAddress()); } registerWorker.put(workerProfile.getAddress(), workerProfile); }

د دندې ماسټر

په CoordinatorService کې، د JobMaster مثال جوړیږي او د هغې init طریقه ویل کیږي. کله چې د init میتود بشپړ شي، نو دا په پام کې نیول کیږي چې د دندې رامینځته کول بریالي دي. بیا د run میتود په رسمي ډول د دندې اجرا کولو ته ویل کیږي.


راځئ چې د پیل کولو او init طریقه وګورو.

 public JobMaster( @NonNull Data jobImmutableInformationData, @NonNull NodeEngine nodeEngine, @NonNull ExecutorService executorService, @NonNull ResourceManager resourceManager, @NonNull JobHistoryService jobHistoryService, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull IMap ownedSlotProfilesIMap, @NonNull IMap<Long, JobInfo> runningJobInfoIMap, @NonNull IMap<Long, HashMap<TaskLocation, SeaTunnelMetricsContext>> metricsImap, EngineConfig engineConfig, SeaTunnelServer seaTunnelServer) { this.jobImmutableInformationData = jobImmutableInformationData; this.nodeEngine = nodeEngine; this.executorService = executorService; flakeIdGenerator = this.nodeEngine .getHazelcastInstance() .getFlakeIdGenerator(Constant.SEATUNNEL_ID_GENERATOR_NAME); this.ownedSlotProfilesIMap = ownedSlotProfilesIMap; this.resourceManager = resourceManager; this.jobHistoryService = jobHistoryService; this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.runningJobInfoIMap = runningJobInfoIMap; this.engineConfig = engineConfig; this.metricsImap = metricsImap; this.seaTunnelServer = seaTunnelServer; this.releasedSlotWhenTaskGroupFinished = new ConcurrentHashMap<>(); }

د پیل کولو په جریان کې، یوازې ساده متغیر دندې پرته له کوم مهم عملیات ترسره کیږي. موږ اړتیا لرو چې د init میتود باندې تمرکز وکړو.

 public synchronized void init(long initializationTimestamp, boolean restart) throws Exception { // The server receives a binary object from the client, // which is first converted to a JobImmutableInformation object, the same object sent by the client jobImmutableInformation = nodeEngine.getSerializationService().toObject(jobImmutableInformationData); // Get the checkpoint configuration, such as the interval, timeout, etc. jobCheckpointConfig = createJobCheckpointConfig( engineConfig.getCheckpointConfig(), jobImmutableInformation.getJobConfig()); LOGGER.info( String.format( "Init JobMaster for Job %s (%s) ", jobImmutableInformation.getJobConfig().getName(), jobImmutableInformation.getJobId())); LOGGER.info( String.format( "Job %s (%s) needed jar urls %s", jobImmutableInformation.getJobConfig().getName(), jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls())); ClassLoader appClassLoader = Thread.currentThread().getContextClassLoader(); // Get the ClassLoader ClassLoader classLoader = seaTunnelServer .getClassLoaderService() .getClassLoader( jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls()); // Deserialize the logical DAG from the client-provided information logicalDag = CustomClassLoadedObject.deserializeWithCustomClassLoader( nodeEngine.getSerializationService(), classLoader, jobImmutableInformation.getLogicalDag()); try { Thread.currentThread().setContextClassLoader(classLoader); // Execute save mode functionality, such as table creation and deletion if (!restart && !logicalDag.isStartWithSavePoint() && ReadonlyConfig.fromMap(logicalDag.getJobConfig().getEnvOptions()) .get(EnvCommonOptions.SAVEMODE_EXECUTE_LOCATION) .equals(SaveModeExecuteLocation.CLUSTER)) { logicalDag.getLogicalVertexMap().values().stream() .map(LogicalVertex::getAction) .filter(action -> action instanceof SinkAction) .map(sink -> ((SinkAction<?, ?, ?, ?>) sink).getSink()) .forEach(JobMaster::handleSaveMode); } // Parse the logical plan into a physical plan final Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> planTuple = PlanUtils.fromLogicalDAG( logicalDag, nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, engineConfig.getQueueType(), engineConfig); this.physicalPlan = planTuple.f0(); this.physicalPlan.setJobMaster(this); this.checkpointPlanMap = planTuple.f1(); } finally { // Reset the current thread's ClassLoader and release the created classLoader Thread.currentThread().setContextClassLoader(appClassLoader); seaTunnelServer .getClassLoaderService() .releaseClassLoader( jobImmutableInformation.getJobId(), jobImmutableInformation.getPluginJarsUrls()); } Exception initException = null; try { // Initialize the checkpoint manager this.initCheckPointManager(restart); } catch (Exception e) { initException = e; } // Add some callback functions for job state listening this.initStateFuture(); if (initException != null) { if (restart) { cancelJob(); } throw initException; } }


په نهایت کې، راځئ چې run طریقه وګورو:

 public void run() { try { physicalPlan.startJob(); } catch (Throwable e) { LOGGER.severe( String.format( "Job %s (%s) run error with: %s", physicalPlan.getJobImmutableInformation().getJobConfig().getName(), physicalPlan.getJobImmutableInformation().getJobId(), ExceptionUtils.getMessage(e))); } finally { jobMasterCompleteFuture.join(); if (engineConfig.getConnectorJarStorageConfig().getEnable()) { List<ConnectorJarIdentifier> pluginJarIdentifiers = jobImmutableInformation.getPluginJarIdentifiers(); seaTunnelServer .getConnectorPackageService() .cleanUpWhenJobFinished( jobImmutableInformation.getJobId(), pluginJarIdentifiers); } } }

دا طریقه نسبتا ساده ده، د پیدا شوي فزیکي پلان اجرا کولو لپاره physicalPlan.startJob() زنګ ووهئ.


د پورتني کوډ څخه، دا څرګنده ده چې وروسته له دې چې سرور د پیرودونکي د دندې سپارلو غوښتنه ترلاسه کړي، دا د JobMaster ټولګي پیل کوي، کوم چې د منطقي پلان څخه فزیکي پلان رامینځته کوي، او بیا فزیکي پالن اجرا کوي.


بیا، موږ اړتیا لرو چې پوه شو چې څنګه منطقي پلان په فزیکي پلان بدلیږي.

له منطقي پلان څخه فزیکي پلان ته تبادله

د فزیکي پلان تولید په JobMaster کې د لاندې میتود په زنګ وهلو سره ترسره کیږي:

 final Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> planTuple = PlanUtils.fromLogicalDAG( logicalDag, nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, engineConfig.getQueueType(), engineConfig);

د فزیکي پلان رامینځته کولو میتود کې ، منطقي پلان لومړی په اجرایوي پلان بدلیږي ، او بیا د اجرا کولو پلان په فزیکي پلان بدلیږي.


 public static Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> fromLogicalDAG( @NonNull LogicalDag logicalDag, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType, @NonNull EngineConfig engineConfig) { return new PhysicalPlanGenerator( new ExecutionPlanGenerator( logicalDag, jobImmutableInformation, engineConfig) .generate(), nodeEngine, jobImmutableInformation, initializationTimestamp, executorService, flakeIdGenerator, runningJobStateIMap, runningJobStateTimestampsIMap, queueType) .generate(); }

د اجرا کولو پلان جوړول

 public ExecutionPlanGenerator( @NonNull LogicalDag logicalPlan, @NonNull JobImmutableInformation jobImmutableInformation, @NonNull EngineConfig engineConfig) { checkArgument( logicalPlan.getEdges().size() > 0, "ExecutionPlan Builder must have LogicalPlan."); this.logicalPlan = logicalPlan; this.jobImmutableInformation = jobImmutableInformation; this.engineConfig = engineConfig; } public ExecutionPlan generate() { log.debug("Generate execution plan using logical plan:"); Set<ExecutionEdge> executionEdges = generateExecutionEdges(logicalPlan.getEdges()); log.debug("Phase 1: generate execution edge list {}", executionEdges); executionEdges = generateShuffleEdges(executionEdges); log.debug("Phase 2: generate shuffle edge list {}", executionEdges); executionEdges = generateTransformChainEdges(executionEdges); log.debug("Phase 3: generate transform chain edge list {}", executionEdges); List<Pipeline> pipelines = generatePipelines(executionEdges); log.debug("Phase 4: generate pipeline list {}", pipelines); ExecutionPlan executionPlan = new ExecutionPlan(pipelines, jobImmutableInformation); log.debug("Phase 5 : generate execution plan {}", executionPlan); return executionPlan; }

د ExecutionPlanGenerator ټولګي یو منطقي پلان اخلي او د یو لړ مرحلو له لارې د اجرا کولو پلان تولیدوي، پشمول د اعدام څنډې، شفل څنډې، د زنځیر کنډکونو بدلول، او په پای کې پایپ لاینونه.

د فزیکي پلان تولید

د PhysicalPlanGenerator ټولګي د اجرا کولو پلان په فزیکي پلان بدلوي:

 public PhysicalPlanGenerator( @NonNull ExecutionPlan executionPlan, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType) { this.executionPlan = executionPlan; this.nodeEngine = nodeEngine; this.jobImmutableInformation = jobImmutableInformation; this.initializationTimestamp = initializationTimestamp; this.executorService = executorService; this.flakeIdGenerator = flakeIdGenerator; this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.queueType = queueType; } public PhysicalPlan generate() { List<PhysicalVertex> physicalVertices = generatePhysicalVertices(executionPlan); List<PhysicalEdge> physicalEdges = generatePhysicalEdges(executionPlan); PhysicalPlan physicalPlan = new PhysicalPlan(physicalVertices, physicalEdges); log.debug("Generate physical plan: {}", physicalPlan); return physicalPlan; }


راځئ چې د دې دوو ټولګیو محتويات وڅیړو.

 public class ExecutionPlan { private final List<Pipeline> pipelines; private final JobImmutableInformation jobImmutableInformation; } public class Pipeline { /** The ID of the pipeline. */ private final Integer id; private final List<ExecutionEdge> edges; private final Map<Long, ExecutionVertex> vertexes; } public class ExecutionEdge { private ExecutionVertex leftVertex; private ExecutionVertex rightVertex; } public class ExecutionVertex { private Long vertexId; private Action action; private int parallelism; }


راځئ چې دا د منطقي پلان سره پرتله کړو:

 public class LogicalDag implements IdentifiedDataSerializable { @Getter private JobConfig jobConfig; private final Set<LogicalEdge> edges = new LinkedHashSet<>(); private final Map<Long, LogicalVertex> logicalVertexMap = new LinkedHashMap<>(); private IdGenerator idGenerator; private boolean isStartWithSavePoint = false; } public class LogicalEdge implements IdentifiedDataSerializable { private LogicalVertex inputVertex; private LogicalVertex targetVertex; private Long inputVertexId; private Long targetVertexId; } public class LogicalVertex implements IdentifiedDataSerializable { private Long vertexId; private Action action; private int parallelism; }

داسې ښکاري چې هر پایپ لاین یو منطقي پلان سره ورته وي. ولې موږ د دې بدلون ګام ته اړتیا لرو؟ راځئ چې د منطقي پلان جوړولو پروسې ته نږدې کتنه وکړو.


لکه څنګه چې پورته ښودل شوي، د اجرا کولو پلان رامینځته کول پنځه مرحلې لري، کوم چې موږ به یې یو له بل څخه بیاکتنه وکړو.

  • 1 ګام: منطقي پلان د اجرا کولو پلان ته بدلول
 // Input is a set of logical plan edges, where each edge stores upstream and downstream nodes private Set<ExecutionEdge> generateExecutionEdges(Set<LogicalEdge> logicalEdges) { Set<ExecutionEdge> executionEdges = new LinkedHashSet<>(); Map<Long, ExecutionVertex> logicalVertexIdToExecutionVertexMap = new HashMap(); // Sort in order: first by input node, then by output node List<LogicalEdge> sortedLogicalEdges = new ArrayList<>(logicalEdges); Collections.sort( sortedLogicalEdges, (o1, o2) -> { if (o1.getInputVertexId() != o2.getInputVertexId()) { return o1.getInputVertexId() > o2.getInputVertexId() ? 1 : -1; } if (o1.getTargetVertexId() != o2.getTargetVertexId()) { return o1.getTargetVertexId() > o2.getTargetVertexId() ? 1 : -1; } return 0; }); // Loop to convert each logical plan edge to an execution plan edge for (LogicalEdge logicalEdge : sortedLogicalEdges) { LogicalVertex logicalInputVertex = logicalEdge.getInputVertex(); ExecutionVertex executionInputVertex = logicalVertexIdToExecutionVertexMap.computeIfAbsent( logicalInputVertex.getVertexId(), vertexId -> { long newId = idGenerator.getNextId(); // Recreate Action for each logical plan node Action newLogicalInputAction = recreateAction( logicalInputVertex.getAction(), newId, logicalInputVertex.getParallelism()); // Convert to execution plan node return new ExecutionVertex( newId, newLogicalInputAction, logicalInputVertex.getParallelism()); }); // Similarly, recreate execution plan nodes for target nodes LogicalVertex logicalTargetVertex = logicalEdge.getTargetVertex(); ExecutionVertex executionTargetVertex = logicalVertexIdToExecutionVertexMap.computeIfAbsent( logicalTargetVertex.getVertexId(), vertexId -> { long newId = idGenerator.getNextId(); Action newLogicalTargetAction = recreateAction( logicalTargetVertex.getAction(), newId, logicalTargetVertex.getParallelism()); return new ExecutionVertex( newId, newLogicalTargetAction, logicalTargetVertex.getParallelism()); }); // Generate execution plan edge ExecutionEdge executionEdge = new ExecutionEdge(executionInputVertex, executionTargetVertex); executionEdges.add(executionEdge); } return executionEdges; }
  • 2 ګام
 private Set<ExecutionEdge> generateShuffleEdges(Set<ExecutionEdge> executionEdges) { // Map of upstream node ID to list of downstream nodes Map<Long, List<ExecutionVertex>> targetVerticesMap = new LinkedHashMap<>(); // Store only nodes of type Source Set<ExecutionVertex> sourceExecutionVertices = new HashSet<>(); executionEdges.forEach( edge -> { ExecutionVertex leftVertex = edge.getLeftVertex(); ExecutionVertex rightVertex = edge.getRightVertex(); if (leftVertex.getAction() instanceof SourceAction) { sourceExecutionVertices.add(leftVertex); } targetVerticesMap .computeIfAbsent(leftVertex.getVertexId(), id -> new ArrayList<>()) .add(rightVertex); }); if (sourceExecutionVertices.size() != 1) { return executionEdges; } ExecutionVertex sourceExecutionVertex = sourceExecutionVertices.stream().findFirst().get(); Action sourceAction = sourceExecutionVertex.getAction(); List<CatalogTable> producedCatalogTables = new ArrayList<>(); if (sourceAction instanceof SourceAction) { try { producedCatalogTables = ((SourceAction<?, ?, ?>) sourceAction) .getSource() .getProducedCatalogTables(); } catch (UnsupportedOperationException e) { } } else if (sourceAction instanceof TransformChainAction) { return executionEdges; } else { throw new SeaTunnelException( "source action must be SourceAction or TransformChainAction"); } // If the source produces a single table or // the source has only one downstream output, return directly if (producedCatalogTables.size() <= 1 || targetVerticesMap.get(sourceExecutionVertex.getVertexId()).size() <= 1) { return executionEdges; } List<ExecutionVertex> sinkVertices = targetVerticesMap.get(sourceExecutionVertex.getVertexId()); // Check if there are other types of actions, currently downstream nodes should ideally have two types: Transform and Sink; here we check if only Sink type is present Optional<ExecutionVertex> hasOtherAction = sinkVertices.stream() .filter(vertex -> !(vertex.getAction() instanceof SinkAction)) .findFirst(); checkArgument(!hasOtherAction.isPresent()); // After executing the above code, the current scenario is: // There is only one data source, this source produces multiple tables, and multiple sink nodes depend on these tables // This means the task has only two types of nodes: a source node that produces multiple tables and a group of sink nodes depending on this source // A new shuffle node will be created and added between the source and sinks // Modify the dependency relationship to source -> shuffle -> multiple sinks Set<ExecutionEdge> newExecutionEdges = new LinkedHashSet<>(); // Shuffle strategy will not be explored in detail here ShuffleStrategy shuffleStrategy = ShuffleMultipleRowStrategy.builder() .jobId(jobImmutableInformation.getJobId()) .inputPartitions(sourceAction.getParallelism()) .catalogTables(producedCatalogTables) .queueEmptyQueueTtl( (int) (engineConfig.getCheckpointConfig().getCheckpointInterval() * 3)) .build(); ShuffleConfig shuffleConfig = ShuffleConfig.builder().shuffleStrategy(shuffleStrategy).build(); long shuffleVertexId = idGenerator.getNextId(); String shuffleActionName = String.format("Shuffle [%s]", sourceAction.getName()); ShuffleAction shuffleAction = new ShuffleAction(shuffleVertexId, shuffleActionName, shuffleConfig); shuffleAction.setParallelism(sourceAction.getParallelism()); ExecutionVertex shuffleVertex = new ExecutionVertex(shuffleVertexId, shuffleAction, shuffleAction.getParallelism()); ExecutionEdge sourceToShuffleEdge = new ExecutionEdge(sourceExecutionVertex, shuffleVertex); newExecutionEdges.add(sourceToShuffleEdge); // Set the parallelism of multiple sink nodes to 1 for (ExecutionVertex sinkVertex : sinkVertices) { sinkVertex.setParallelism(1); sinkVertex.getAction().setParallelism(1); ExecutionEdge shuffleToSinkEdge = new ExecutionEdge(shuffleVertex, sinkVertex); newExecutionEdges.add(shuffleToSinkEdge); } return newExecutionEdges; }

د شفل مرحله ځانګړي سناریوګانې په ګوته کوي چیرې چې سرچینه د ډیری میزونو لوستلو ملاتړ کوي ، او د دې سرچینې پورې اړوند ډیری سینک نوډونه شتون لري. په داسې حالتونو کې، د شفل نوډ په منځ کې اضافه کیږي.

3 ګام

 private Set<ExecutionEdge> generateTransformChainEdges(Set<ExecutionEdge> executionEdges) { // Uses three structures: stores all Source nodes and the input/output nodes for each // inputVerticesMap stores all upstream input nodes by downstream node id as the key // targetVerticesMap stores all downstream output nodes by upstream node id as the key Map<Long, List<ExecutionVertex>> inputVerticesMap = new HashMap<>(); Map<Long, List<ExecutionVertex>> targetVerticesMap = new HashMap<>(); Set<ExecutionVertex> sourceExecutionVertices = new HashSet<>(); executionEdges.forEach( edge -> { ExecutionVertex leftVertex = edge.getLeftVertex(); ExecutionVertex rightVertex = edge.getRightVertex(); if (leftVertex.getAction() instanceof SourceAction) { sourceExecutionVertices.add(leftVertex); } inputVerticesMap .computeIfAbsent(rightVertex.getVertexId(), id -> new ArrayList<>()) .add(leftVertex); targetVerticesMap .computeIfAbsent(leftVertex.getVertexId(), id -> new ArrayList<>()) .add(rightVertex); }); Map<Long, ExecutionVertex> transformChainVertexMap = new HashMap<>(); Map<Long, Long> chainedTransformVerticesMapping = new HashMap<>(); // Loop over each source, starting with all head nodes in the DAG for (ExecutionVertex sourceVertex : sourceExecutionVertices) { List<ExecutionVertex> vertices = new ArrayList<>(); vertices.add(sourceVertex); for (int index = 0; index < vertices.size(); index++) { ExecutionVertex vertex = vertices.get(index); fillChainedTransformExecutionVertex( vertex, chainedTransformVerticesMapping, transformChainVertexMap, executionEdges, Collections.unmodifiableMap(inputVerticesMap), Collections.unmodifiableMap(targetVerticesMap)); // If the current node has downstream nodes, add all downstream nodes to the list // The second loop will recalculate the newly added downstream nodes, which could be Transform nodes or Sink nodes if (targetVerticesMap.containsKey(vertex.getVertexId())) { vertices.addAll(targetVerticesMap.get(vertex.getVertexId())); } } } // After looping, chained Transform nodes will be chained, and the chainable edges will be removed from the execution plan // Therefore, the logical plan at this point cannot form the graph relationship and needs to be rebuilt Set<ExecutionEdge> transformChainEdges = new LinkedHashSet<>(); // Loop over existing relationships for (ExecutionEdge executionEdge : executionEdges) { ExecutionVertex leftVertex = executionEdge.getLeftVertex(); ExecutionVertex rightVertex = executionEdge.getRightVertex(); boolean needRebuild = false; // Check if the input or output nodes of the current edge are in the chain mapping // If so, the node has been chained, and we need to find the chained node in the mapping // and rebuild the DAG if (chainedTransformVerticesMapping.containsKey(leftVertex.getVertexId())) { needRebuild = true; leftVertex = transformChainVertexMap.get( chainedTransformVerticesMapping.get(leftVertex.getVertexId())); } if (chainedTransformVerticesMapping.containsKey(rightVertex.getVertexId())) { needRebuild = true; rightVertex = transformChainVertexMap.get( chainedTransformVerticesMapping.get(rightVertex.getVertexId())); } if (needRebuild) { executionEdge = new ExecutionEdge(leftVertex, rightVertex); } transformChainEdges.add(executionEdge); } return transformChainEdges; } private void fillChainedTransformExecutionVertex( ExecutionVertex currentVertex, Map<Long, Long> chainedTransformVerticesMapping, Map<Long, ExecutionVertex> transformChainVertexMap, Set<ExecutionEdge> executionEdges, Map<Long, List<ExecutionVertex>> inputVerticesMap, Map<Long, List<ExecutionVertex>> targetVerticesMap) { // Exit if the map already contains the current node if (chainedTransformVerticesMapping.containsKey(currentVertex.getVertexId())) { return; } List<ExecutionVertex> transformChainedVertices = new ArrayList<>(); collectChainedVertices( currentVertex, transformChainedVertices, executionEdges, inputVerticesMap, targetVerticesMap); // If the list is not empty, it means the Transform nodes in the list can be merged into one if (transformChainedVertices.size() > 0) { long newVertexId = idGenerator.getNextId(); List<SeaTunnelTransform> transforms = new ArrayList<>(transformChainedVertices.size()); List<String> names = new ArrayList<>(transformChainedVertices.size()); Set<URL> jars = new HashSet<>(); Set<ConnectorJarIdentifier> identifiers = new HashSet<>(); transformChainedVertices.stream() .peek( // Add all historical node IDs and new node IDs to the mapping vertex -> chainedTransformVerticesMapping.put( vertex.getVertexId(), newVertexId)) .map(ExecutionVertex::getAction) .map(action -> (TransformAction) action) .forEach( action -> { transforms.add(action.getTransform()); jars.addAll(action.getJarUrls()); identifiers.addAll(action.getConnectorJarIdentifiers()); names.add(action.getName()); }); String transformChainActionName = String.format("TransformChain[%s]", String.join("->", names)); // Merge multiple TransformActions into one TransformChainAction TransformChainAction transformChainAction = new TransformChainAction( newVertexId, transformChainActionName, jars, identifiers, transforms); transformChainAction.setParallelism(currentVertex.getAction().getParallelism()); ExecutionVertex executionVertex = new ExecutionVertex( newVertexId, transformChainAction, currentVertex.getParallelism()); // Store the modified node information in the state transformChainVertexMap.put(newVertexId, executionVertex); chainedTransformVerticesMapping.put( currentVertex.getVertexId(), executionVertex.getVertexId()); } } private void collectChainedVertices( ExecutionVertex currentVertex, List<ExecutionVertex> chainedVertices, Set<ExecutionEdge> executionEdges, Map<Long, List<ExecutionVertex>> inputVerticesMap, Map<Long, List<ExecutionVertex>> targetVerticesMap) { Action action = currentVertex.getAction(); // Only merge TransformAction if (action instanceof TransformAction) { if (chainedVertices.size() == 0) { // If the list of vertices to be merged is empty, add itself to the list // The condition for entering this branch is that the current node is a TransformAction and the list to be merged is empty // There may be several scenarios: the first Transform node enters, and this Transform node has no constraints chainedVertices.add(currentVertex); } else if (inputVerticesMap.get(currentVertex.getVertexId()).size() == 1) { // When this condition is entered, it means: // The list of vertices to be merged already has at least one TransformAction // The scenario at this point is that the upstream Transform node has only one downstream node, ie, the current node. This constraint is ensured by the following judgment // Chain the current TransformAction node with the previous TransformAction node // Delete this relationship from the execution plan executionEdges.remove( new ExecutionEdge( chainedVertices.get(chainedVertices.size() - 1), currentVertex)); // Add itself to the list of nodes to be merged chainedVertices.add(currentVertex); } else { return; } } else { return; } // It cannot chain to any target vertex if it has multiple target vertices. if (targetVerticesMap.get(currentVertex.getVertexId()).size() == 1) { // If the current node has only one downstream node, try chaining again // If the current node has multiple downstream nodes, it will not chain the downstream nodes, so it can be ensured that the above chaining is a one-to-one relationship // This call occurs when the Transform node has only one downstream node collectChainedVertices( targetVerticesMap.get(currentVertex.getVertexId()).get(0), chainedVertices, executionEdges, inputVerticesMap, targetVerticesMap); } }

4 ګام

 private List<Pipeline> generatePipelines(Set<ExecutionEdge> executionEdges) { // Stores each execution plan node Set<ExecutionVertex> executionVertices = new LinkedHashSet<>(); for (ExecutionEdge edge : executionEdges) { executionVertices.add(edge.getLeftVertex()); executionVertices.add(edge.getRightVertex()); } // Calls the Pipeline generator to convert the execution plan into Pipelines PipelineGenerator pipelineGenerator = new PipelineGenerator(executionVertices, new ArrayList<>(executionEdges)); List<Pipeline> pipelines = pipelineGenerator.generatePipelines(); Set<String> duplicatedActionNames = new HashSet<>(); Set<String> actionNames = new HashSet<>(); for (Pipeline pipeline : pipelines) { Integer pipelineId = pipeline.getId(); for (ExecutionVertex vertex : pipeline.getVertexes().values()) { // Get each execution node of the current Pipeline, reset the Action name, and add the pipeline name Action action = vertex.getAction(); String actionName = String.format("pipeline-%s [%s]", pipelineId, action.getName()); action.setName(actionName); if (actionNames.contains(actionName)) { duplicatedActionNames.add(actionName); } actionNames.add(action Name); } } if (duplicatedActionNames.size() > 0) { throw new RuntimeException( String.format( "Duplicated Action names found: %s", duplicatedActionNames)); } return pipelines; } public PipelineGenerator(Collection<ExecutionVertex> vertices, List<ExecutionEdge> edges) { this.vertices = vertices; this.edges = edges; } public List<Pipeline> generatePipelines() { List<ExecutionEdge> executionEdges = expandEdgeByParallelism(edges); // Split the execution plan into unrelated execution plans based on their relationships // Divide into several unrelated execution plans List<List<ExecutionEdge>> edgesList = splitUnrelatedEdges(executionEdges); edgesList = edgesList.stream() .flatMap(e -> this.splitUnionEdge(e).stream()) .collect(Collectors.toList()); // Just convert execution plan to pipeline at now. We should split it to multi pipeline with // cache in the future IdGenerator idGenerator = new IdGenerator(); // Convert execution plan graph to Pipeline return edgesList.stream() .map( e -> { Map<Long, ExecutionVertex> vertexes = new HashMap<>(); List<ExecutionEdge> pipelineEdges = e.stream() .map( edge -> { if (!vertexes.containsKey( edge.getLeftVertexId())) { vertexes.put( edge.getLeftVertexId(), edge.getLeftVertex()); } ExecutionVertex source = vertexes.get( edge.getLeftVertexId()); if (!vertexes.containsKey( edge.getRightVertexId())) { vertexes.put( edge.getRightVertexId(), edge.getRightVertex()); } ExecutionVertex destination = vertexes.get( edge.getRightVertexId()); return new ExecutionEdge( source, destination); }) .collect(Collectors.toList()); return new Pipeline( (int) idGenerator.getNextId(), pipelineEdges, vertexes); }) .collect(Collectors.toList()); }
  • 5 ګام

په پنځم ګام کې د پلي کولو پلان مثالونه رامینځته کول شامل دي ، په څلورم ګام کې رامینځته شوي د پایپ لاین پیرامیټرو تیریدل.

لنډیز:

د اجرا پلان په منطقي پلان کې لاندې دندې ترسره کوي:

  1. کله چې یوه سرچینه ډیری جدولونه رامینځته کوي او ډیری سینک نوډونه پدې سرچینې پورې اړه لري ، نو په مینځ کې یو شفل نوډ اضافه کیږي.
  2. د زنځیر ضم کولو لیږد نوډونو هڅه کول ، په یو نوډ کې د څو ټرانسفارم نوډونو سره یوځای کول.
  3. دندې تقسیم کړئ، configuration file/LogicalDag په څو غیر اړونده کارونو ویشل چې List<Pipeline> په توګه ښودل شوي.


د فزیکي پلان تولید

مخکې له دې چې د فزیکي پلان تولید ته پام وکړو، راځئ لومړی بیا کتنه وکړو چې کوم معلومات په تولید شوي فزیکي پلان کې شامل دي او د هغې داخلي برخې معاینه کړئ.

 public class PhysicalPlan { private final List<SubPlan> pipelineList; private final AtomicInteger finishedPipelineNum = new AtomicInteger(0); private final AtomicInteger canceledPipelineNum = new AtomicInteger(0); private final AtomicInteger failedPipelineNum = new AtomicInteger(0); private final JobImmutableInformation jobImmutableInformation; private final IMap<Object, Object> runningJobStateIMap; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private CompletableFuture<JobResult> jobEndFuture; private final AtomicReference<String> errorBySubPlan = new AtomicReference<>(); private final String jobFullName; private final long jobId; private JobMaster jobMaster; private boolean makeJobEndWhenPipelineEnded = true; private volatile boolean isRunning = false; }


په دې ټولګي کې، کلیدي ساحه ده pipelineList ، کوم چې د SubPlan مثالونو لیست دی:

 public class SubPlan { private final int pipelineMaxRestoreNum; private final int pipelineRestoreIntervalSeconds; private final List<PhysicalVertex> physicalVertexList; private final List<PhysicalVertex> coordinatorVertexList; private final int pipelineId; private final AtomicInteger finishedTaskNum = new AtomicInteger(0); private final AtomicInteger canceledTaskNum = new AtomicInteger(0); private final AtomicInteger failedTaskNum = new AtomicInteger(0); private final String pipelineFullName; private final IMap<Object, Object> runningJobStateIMap; private final Map<String, String> tags; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private CompletableFuture<PipelineExecutionState> pipelineFuture; private final PipelineLocation pipelineLocation; private AtomicReference<String> errorByPhysicalVertex = new AtomicReference<>(); private final ExecutorService executorService; private JobMaster jobMaster; private PassiveCompletableFuture<Void> reSchedulerPipelineFuture; private Integer pipelineRestoreNum; private final Object restoreLock = new Object(); private volatile PipelineStatus currPipelineStatus; public volatile boolean isRunning = false; private Map<TaskGroupLocation, SlotProfile> slotProfiles; }


د SubPlan ټولګي PhysicalVertex مثالونو لیست ساتي، په فزیکي پلان نوډونو او همغږي کونکي نوډونو ویشل شوي:

 public class PhysicalVertex { private final TaskGroupLocation taskGroupLocation; private final String taskFullName; private final TaskGroupDefaultImpl taskGroup; private final ExecutorService executorService; private final FlakeIdGenerator flakeIdGenerator; private final Set<URL> pluginJarsUrls; private final Set<ConnectorJarIdentifier> connectorJarIdentifiers; private final IMap<Object, Object> runningJobStateIMap; private CompletableFuture<TaskExecutionState> taskFuture; private final IMap<Object, Long[]> runningJobStateTimestampsIMap; private final NodeEngine nodeEngine; private JobMaster jobMaster; private volatile ExecutionState currExecutionState = ExecutionState.CREATED; public volatile boolean isRunning = false; private AtomicReference<String> errorByPhysicalVertex = new AtomicReference<>(); }
 public class TaskGroupDefaultImpl implements TaskGroup { private final TaskGroupLocation taskGroupLocation; private final String taskGroupName; // Stores the tasks that the physical node needs to execute // Each task could be for reading data, writing data, data splitting, checkpoint tasks, etc. private final Map<Long, Task> tasks; }


PhysicalPlanGenerator مسؤل دی چې د اجرا کولو پلان په SeaTunnelTask کې بدل کړي او د همغږۍ مختلف دندې اضافه کړي لکه د ډیټا ویشل ، د معلوماتو ژمنې ، او د پلي کولو پرمهال د پوستې دندې.

 public PhysicalPlanGenerator( @NonNull ExecutionPlan executionPlan, @NonNull NodeEngine nodeEngine, @NonNull JobImmutableInformation jobImmutableInformation, long initializationTimestamp, @NonNull ExecutorService executorService, @NonNull FlakeIdGenerator flakeIdGenerator, @NonNull IMap runningJobStateIMap, @NonNull IMap runningJobStateTimestampsIMap, @NonNull QueueType queueType) { this.pipelines = executionPlan.getPipelines(); this.nodeEngine = nodeEngine; this.jobImmutableInformation = jobImmutableInformation; this.initializationTimestamp = initializationTimestamp; this.executorService = executorService; this.flakeIdGenerator = flakeIdGenerator; // the checkpoint of a pipeline this.pipelineTasks = new HashSet<>(); this.startingTasks = new HashSet<>(); this.subtaskActions = new HashMap<>(); this.runningJobStateIMap = runningJobStateIMap; this.runningJobStateTimestampsIMap = runningJobStateTimestampsIMap; this.queueType = queueType; } public Tuple2<PhysicalPlan, Map<Integer, CheckpointPlan>> generate() { // Get the node filter conditions from user configuration to select the nodes where tasks will run Map<String, String> tagFilter = (Map<String, String>) jobImmutableInformation .getJobConfig() .getEnvOptions() .get(EnvCommonOptions.NODE_TAG_FILTER.key()); // TODO Determine which tasks do not need to be restored according to state CopyOnWriteArrayList<PassiveCompletableFuture<PipelineStatus>> waitForCompleteBySubPlanList = new CopyOnWriteArrayList<>(); Map<Integer, CheckpointPlan> checkpointPlans = new HashMap<>(); final int totalPipelineNum = pipelines.size(); Stream<SubPlan> subPlanStream = pipelines.stream() .map( pipeline -> { // Clear the state each time this.pipelineTasks.clear(); this.startingTasks.clear(); this.subtaskActions.clear(); final int pipelineId = pipeline.getId(); // Get current task information final List<ExecutionEdge> edges = pipeline.getEdges(); // Get all SourceActions List<SourceAction<?, ?, ?>> sources = findSourceAction(edges); // Generate Source data slice tasks, ie, SourceSplitEnumeratorTask // This task calls the SourceSplitEnumerator class in the connector if supported List<PhysicalVertex> coordinatorVertexList = getEnumeratorTask( sources, pipelineId, totalPipelineNum); // Generate Sink commit tasks, ie, SinkAggregatedCommitterTask // This task calls the SinkAggregatedCommitter class in the connector if supported // These two tasks are executed as coordination tasks coordinatorVertexList.addAll( getCommitterTask(edges, pipelineId, totalPipelineNum)); List<PhysicalVertex> physicalVertexList = getSourceTask( edges, sources, pipelineId, totalPipelineNum); // physicalVertexList.addAll( getShuffleTask(edges, pipelineId, totalPipelineNum)); CompletableFuture<PipelineStatus> pipelineFuture = new CompletableFuture<>(); waitForCompleteBySubPlanList.add( new PassiveCompletableFuture<>(pipelineFuture)); // Add checkpoint tasks checkpointPlans.put( pipelineId, CheckpointPlan.builder() .pipelineId(pipelineId) .pipelineSubtasks(pipelineTasks) .startingSubtasks(startingTasks) .pipelineActions(pipeline.getActions()) .subtaskActions(subtaskActions) .build()); return new SubPlan( pipelineId, totalPipelineNum, initializationTimestamp, physicalVertexList, coordinatorVertexList, jobImmutableInformation, executorService, runningJobStateIMap, runningJobStateTimestampsIMap, tagFilter); }); PhysicalPlan physicalPlan = new PhysicalPlan( subPlanStream.collect(Collectors.toList()), executorService, jobImmutableInformation, initializationTimestamp, runningJobStateIMap, runningJobStateTimestampsIMap); return Tuple2.tuple2(physicalPlan, checkpointPlans); }

د فزیکي پلان رامینځته کولو پروسه کې د اجرا کولو پلان په SeaTunnelTask کې بدلول او د همغږۍ مختلف دندې شاملول شامل دي ، لکه د ډیټا ویشلو دندې ، د معلوماتو ژمنې دندې ، او د پوستې دندې.


په SeaTunnelTask کې، دندې په SourceFlowLifeCycle , SinkFlowLifeCycle , TransformFlowLifeCycle , ShuffleSinkFlowLifeCycle , ShuffleSourceFlowLifeCycle کې بدلیږي .


د مثال په توګه، د SourceFlowLifeCycle او SinkFlowLifeCycle ټولګي په لاندې ډول دي:

  • سرچینه فلو لائف سائیکل
 @Override public void init() throws Exception { this.splitSerializer = sourceAction.getSource().getSplitSerializer(); this.reader = sourceAction .getSource() .createReader( new SourceReaderContext( indexID, sourceAction.getSource().getBoundedness(), this, metricsContext, eventListener)); this.enumeratorTaskAddress = getEnumeratorTaskAddress(); } @Override public void open() throws Exception { reader.open(); register(); } public void collect() throws Exception { if (!prepareClose) { if (schemaChanging()) { log.debug("schema is changing, stop reader collect records"); Thread.sleep(200); return; } reader.pollNext(collector); if (collector.isEmptyThisPollNext()) { Thread.sleep(100); } else { collector.resetEmptyThisPollNext(); /** * The current thread obtain a checkpoint lock in the method {@link * SourceReader#pollNext( Collector)}. When trigger the checkpoint or savepoint, * other threads try to obtain the lock in the method {@link * SourceFlowLifeCycle#triggerBarrier(Barrier)}. When high CPU load, checkpoint * process may be blocked as long time. So we need sleep to free the CPU. */ Thread.sleep(0L); } if (collector.captureSchemaChangeBeforeCheckpointSignal()) { if (schemaChangePhase.get() != null) { throw new IllegalStateException( "previous schema changes in progress, schemaChangePhase: " + schemaChangePhase.get()); } schemaChangePhase.set(SchemaChangePhase.createBeforePhase()); runningTask.triggerSchemaChangeBeforeCheckpoint().get(); log.info("triggered schema-change-before checkpoint, stopping collect data"); } else if (collector.captureSchemaChangeAfterCheckpointSignal()) { if (schemaChangePhase.get() != null) { throw new IllegalStateException( "previous schema changes in progress, schemaChangePhase: " + schemaChangePhase.get()); } schemaChangePhase.set(SchemaChangePhase.createAfterPhase()); runningTask.triggerSchemaChangeAfterCheckpoint().get(); log.info("triggered schema-change-after checkpoint, stopping collect data"); } } else { Thread.sleep(100); } }

په SourceFlowLifeCycle کې، د معلوماتو لوستل د collect میتود کې ترسره کیږي. یوځل چې ډاټا لوستل شي، دا د SeaTunnelSourceCollector کې ځای پرځای کیږي. کله چې ډاټا ترلاسه شي، راټولونکی میټریک تازه کوي او ډاټا د زیرمې برخو ته لیږي.


 @Override public void collect(T row) { try { if (row instanceof SeaTunnelRow) { String tableId = ((SeaTunnelRow) row).getTableId(); int size; if (rowType instanceof SeaTunnelRowType) { size = ((SeaTunnelRow) row).getBytesSize((SeaTunnelRowType) rowType); } else if (rowType instanceof MultipleRowType) { size = ((SeaTunnelRow) row).getBytesSize(rowTypeMap.get(tableId)); } else { throw new SeaTunnelEngineException( "Unsupported row type: " + rowType.getClass().getName()); } sourceReceivedBytes.inc(size); sourceReceivedBytesPerSeconds.markEvent(size); flowControlGate.audit((SeaTunnelRow) row); if (StringUtils.isNotEmpty(tableId)) { String tableName = getFullName(TablePath.of(tableId)); Counter sourceTableCounter = sourceReceivedCountPerTable.get(tableName); if (Objects.nonNull(sourceTableCounter)) { sourceTableCounter.inc(); } else { Counter counter = metricsContext.counter(SOURCE_RECEIVED_COUNT + "#" + tableName); counter.inc(); sourceReceivedCountPerTable.put(tableName, counter); } } } sendRecordToNext(new Record<>(row)); emptyThisPollNext = false; sourceReceivedCount.inc(); sourceReceivedQPS.markEvent(); } catch (IOException e) { throw new RuntimeException(e); } } public void sendRecordToNext(Record<?> record) throws IOException { synchronized (checkpointLock) { for (OneInputFlowLifeCycle<Record<?>> output : outputs) { output.received(record); } } }
  • SinkFlowLifeCycle
 @Override public void received(Record<?> record) { try { if (record.getData() instanceof Barrier) { long startTime = System.currentTimeMillis(); Barrier barrier = (Barrier) record.getData(); if (barrier.prepareClose(this.taskLocation)) { prepareClose = true; } if (barrier.snapshot()) { try { lastCommitInfo = writer.prepareCommit(); } catch (Exception e) { writer.abortPrepare(); throw e; } List<StateT> states = writer.snapshotState(barrier.getId()); if (!writerStateSerializer.isPresent()) { runningTask.addState( barrier, ActionStateKey.of(sinkAction), Collections.emptyList()); } else { runningTask.addState( barrier, ActionStateKey.of(sinkAction), serializeStates(writerStateSerializer.get(), states)); } if (containAggCommitter) { CommitInfoT commitInfoT = null; if (lastCommitInfo.isPresent()) { commitInfoT = lastCommitInfo.get(); } runningTask .getExecutionContext() .sendToMember( new SinkPrepareCommitOperation<CommitInfoT>( barrier, committerTaskLocation, commitInfoSerializer.isPresent() ? commitInfoSerializer .get() .serialize(commitInfoT) : null), committerTaskAddress) .join(); } } else { if (containAggCommitter) { runningTask .getExecutionContext() .sendToMember( new BarrierFlowOperation(barrier, committerTaskLocation), committerTaskAddress) .join(); } } runningTask.ack(barrier); log.debug( "trigger barrier [{}] finished, cost {}ms. taskLocation [{}]", barrier.getId(), System.currentTimeMillis() - startTime, taskLocation); } else if (record.getData() instanceof SchemaChangeEvent) { if (prepareClose) { return; } SchemaChangeEvent event = (SchemaChangeEvent) record.getData(); writer.applySchemaChange(event); } else { if (prepareClose) { return; } writer.write((T) record.getData()); sinkWriteCount.inc(); sinkWriteQPS.markEvent(); if (record.getData() instanceof SeaTunnelRow) { long size = ((SeaTunnelRow) record.getData()).getBytesSize(); sinkWriteBytes.inc(size); sinkWriteBytesPerSeconds.markEvent(size); String tableId = ((SeaTunnelRow) record.getData()).getTableId(); if (StringUtils.isNotBlank(tableId)) { String tableName = getFullName(TablePath.of(tableId)); Counter sinkTableCounter = sinkWriteCountPerTable.get(tableName); if (Objects.nonNull(sinkTableCounter)) { sinkTableCounter.inc(); } else { Counter counter = metricsContext.counter(SINK_WRITE_COUNT + "#" + tableName); counter.inc(); sinkWriteCountPerTable.put(tableName, counter); } } } } } catch (Exception e) { throw new RuntimeException(e); } }

د دندې اجرا کول

په CoordinatorService کې، فزیکي پلان د init میتود له لارې رامینځته کیږي، او بیا د run طریقه ویل کیږي چې واقعیا کار پیل کړي.

 CoordinatorService { jobMaster.init( runningJobInfoIMap.get(jobId).getInitializationTimestamp(), false); ... jobMaster.run(); } JobMaster { public void run() { ... physicalPlan.startJob(); ... } }


په JobMaster کې، کله چې دنده پیل کړئ، دا د PhysicalPlan د startJob میتود ته وایي.

 public void startJob() { isRunning = true; log.info("{} state process is start", getJobFullName()); stateProcess(); } private synchronized void stateProcess() { if (!isRunning) { log.warn(String.format("%s state process is stopped", jobFullName)); return; } switch (getJobStatus()) { case CREATED: updateJobState(JobStatus.SCHEDULED); break; case SCHEDULED: getPipelineList() .forEach( subPlan -> { if (PipelineStatus.CREATED.equals( subPlan.getCurrPipelineStatus())) { subPlan.startSubPlanStateProcess(); } }); updateJobState(JobStatus.RUNNING); break; case RUNNING: case DOING_SAVEPOINT: break; case FAILING: case CANCELING: jobMaster.neverNeedRestore(); getPipelineList().forEach(SubPlan::cancelPipeline); break; case FAILED: case CANCELED: case SAVEPOINT_DONE: case FINISHED: stopJobStateProcess(); jobEndFuture.complete(new JobResult(getJobStatus(), errorBySubPlan.get())); return; default: throw new IllegalArgumentException("Unknown Job State: " + getJobStatus()); } }

په PhysicalPlan کې، د یوې دندې پیل کول د دندې وضعیت SCHEDULED ته تازه کوي او بیا د SubPlan د پیل میتود ته زنګ وهي.

 public void startSubPlanStateProcess() { isRunning = true; log.info("{} state process is start", getPipelineFullName()); stateProcess(); } private synchronized void stateProcess() { if (!isRunning) { log.warn(String.format("%s state process not start", pipelineFullName)); return; } PipelineStatus state = getCurrPipelineStatus(); switch (state) { case CREATED: updatePipelineState(PipelineStatus.SCHEDULED); break; case SCHEDULED: try { ResourceUtils.applyResourceForPipeline(jobMaster.getResourceManager(), this); log.debug( "slotProfiles: {}, PipelineLocation: {}", slotProfiles, this.getPipelineLocation()); updatePipelineState(PipelineStatus.DEPLOYING); } catch (Exception e) { makePipelineFailing(e); } break; case DEPLOYING: coordinatorVertexList.forEach( task -> { if (task.getExecutionState().equals(ExecutionState.CREATED)) { task.startPhysicalVertex(); task.makeTaskGroupDeploy(); } }); physicalVertexList.forEach( task -> { if (task.getExecutionState().equals(ExecutionState.CREATED)) { task.startPhysicalVertex(); task.makeTaskGroupDeploy(); } }); updatePipelineState(PipelineStatus.RUNNING); break; case RUNNING: break; case FAILING: case CANCELING: coordinatorVertexList.forEach( task -> { task.startPhysicalVertex(); task.cancel(); }); physicalVertexList.forEach( task -> { task.startPhysicalVertex(); task.cancel(); }); break; case FAILED: case CANCELED: if (checkNeedRestore(state) && prepareRestorePipeline()) { jobMaster.releasePipelineResource(this); restorePipeline(); return; } subPlanDone(state); stopSubPlanStateProcess(); pipelineFuture.complete( new PipelineExecutionState(pipelineId, state, errorByPhysicalVertex.get())); return; case FINISHED: subPlanDone(state); stopSubPlanStateProcess(); pipelineFuture.complete( new PipelineExecutionState( pipelineId, getPipelineState(), errorByPhysicalVertex.get())); return; default: throw new IllegalArgumentException("Unknown Pipeline State: " + getPipelineState()); } }

په SubPlan کې، سرچینې د ټولو دندو لپاره کارول کیږي. د سرچینې غوښتنلیک د ResourceManager له لارې ترسره کیږي. د سرچینې غوښتنلیک په جریان کې، نوډونه د کارونکي لخوا ټاکل شوي ټاګونو پراساس غوره کیږي ترڅو ډاډ ترلاسه شي چې دندې په ځانګړي نوډونو کې پرمخ ځي، د سرچینې انزوا ترلاسه کول.


 public static void applyResourceForPipeline( @NonNull ResourceManager resourceManager, @NonNull SubPlan subPlan) { Map<TaskGroupLocation, CompletableFuture<SlotProfile>> futures = new HashMap<>(); Map<TaskGroupLocation, SlotProfile> slotProfiles = new HashMap<>(); // TODO If there is no enough resources for tasks, we need add some wait profile subPlan.getCoordinatorVertexList() .forEach( coordinator -> futures.put( coordinator.getTaskGroupLocation(), applyResourceForTask( resourceManager, coordinator, subPlan.getTags()))); subPlan.getPhysicalVertexList() .forEach( task -> futures.put( task.getTaskGroupLocation(), applyResourceForTask( resourceManager, task, subPlan.getTags()))); futures.forEach( (key, value) -> { try { slotProfiles.put(key, value == null ? null : value.join()); } catch (CompletionException e) { // do nothing } }); // set it first, avoid can't get it when get resource not enough exception and need release // applied resource subPlan.getJobMaster().setOwnedSlotProfiles(subPlan.getPipelineLocation(), slotProfiles); if (futures.size() != slotProfiles.size()) { throw new NoEnoughResourceException(); } } public static CompletableFuture<SlotProfile> applyResourceForTask( ResourceManager resourceManager, PhysicalVertex task, Map<String, String> tags) { // TODO custom resource size return resourceManager.applyResource( task.getTaskGroupLocation().getJobId(), new ResourceProfile(), tags); } public CompletableFuture<List<SlotProfile>> applyResources( long jobId, List<ResourceProfile> resourceProfile, Map<String, String> tagFilter) throws NoEnoughResourceException { waitingWorkerRegister(); ConcurrentMap<Address, WorkerProfile> matchedWorker = filterWorkerByTag(tagFilter); if (matchedWorker.isEmpty()) { log.error("No matched worker with tag filter {}.", tagFilter); throw new NoEnoughResourceException(); } return new ResourceRequestHandler(jobId, resourceProfile, matchedWorker, this) .request(tagFilter); }

کله چې ټول موجود نوډونه ترلاسه شي، نوډونه بدلیږي او یو نوډ د اړتیا وړ سرچینو څخه لوی سرچینې سره په تصادفي ډول غوره کیږي. نوډ بیا اړیکه نیول کیږي، او یو RequestSlotOperation ورته لیږل کیږي.


 public Optional<WorkerProfile> preCheckWorkerResource(ResourceProfile r) { // Shuffle the order to ensure random selection of workers List<WorkerProfile> workerProfiles = Arrays.asList(registerWorker.values().toArray(new WorkerProfile[0])); Collections.shuffle(workerProfiles); // Check if there are still unassigned slots Optional<WorkerProfile> workerProfile = workerProfiles.stream() .filter( worker -> Arrays.stream(worker.getUnassignedSlots()) .anyMatch( slot -> slot.getResourceProfile() .enoughThan(r))) .findAny(); if (!workerProfile.isPresent()) { // Check if there are still unassigned resources workerProfile = workerProfiles.stream() .filter(WorkerProfile::isDynamicSlot) .filter(worker -> worker.getUnassignedResource().enoughThan(r)) .findAny(); } return workerProfile; } private CompletableFuture<SlotAndWorkerProfile> singleResourceRequestToMember( int i, ResourceProfile r, WorkerProfile workerProfile) { CompletableFuture<SlotAndWorkerProfile> future = resourceManager.sendToMember( new RequestSlotOperation(jobId, r), workerProfile.getAddress()); return future.whenComplete( withTryCatch( LOGGER, (slotAndWorkerProfile, error) -> { if (error != null) { throw new RuntimeException(error); } else { resourceManager.heartbeat(slotAndWorkerProfile.getWorkerProfile()); addSlotToCacheMap(i, slotAndWorkerProfile.getSlotProfile()); } })); }

کله چې د نوډ SlotService د requestSlot غوښتنه ترلاسه کړي، دا خپل معلومات تازه کوي او ماسټر نوډ ته یې بیرته راولي. که د سرچینې غوښتنه تمه شوې پایلې پوره نه کړي، نو NoEnoughResourceException اچول کیږي، چې د دندې ناکامي په ګوته کوي. کله چې د منابعو تخصیص بریالی شي، د دندې ګمارل د task.makeTaskGroupDeploy() سره پیل کیږي، کوم چې دنده د worker نوډ ته د اجرا کولو لپاره لیږي.


 TaskDeployState deployState = deploy(jobMaster.getOwnedSlotProfiles(taskGroupLocation)); public TaskDeployState deploy(@NonNull SlotProfile slotProfile) { try { if (slotProfile.getWorker().equals(nodeEngine.getThisAddress())) { return deployOnLocal(slotProfile); } else { return deployOnRemote(slotProfile); } } catch (Throwable th) { return TaskDeployState.failed(th); } } private TaskDeployState deployOnRemote(@Non Null SlotProfile slotProfile) { return deployInternal( taskGroupImmutableInformation -> { try { return (TaskDeployState) NodeEngineUtil.sendOperationToMemberNode( nodeEngine, new DeployTaskOperation( slotProfile, nodeEngine .getSerializationService() .toData( taskGroupImmutableInformation)), slotProfile.getWorker()) .get(); } catch (Exception e) { if (getExecutionState().isEndState()) { log.warn(ExceptionUtils.getMessage(e)); log.warn( String.format( "%s deploy error, but the state is already in end state %s, skip this error", getTaskFullName(), currExecutionState)); return TaskDeployState.success(); } else { return TaskDeployState.failed(e); } } }); }

د دندې ګمارل

کله چې د دندې ځای په ځای کول، د دندې معلومات د سرچینې تخصیص په وخت کې ترلاسه شوي نوډ ته لیږل کیږي:

 public TaskDeployState deployTask(@NonNull Data taskImmutableInformation) { TaskGroupImmutableInformation taskImmutableInfo = nodeEngine.getSerializationService().toObject(taskImmutableInformation); return deployTask(taskImmutableInfo); } public TaskDeployState deployTask(@NonNull TaskGroupImmutableInformation taskImmutableInfo) { logger.info( String.format( "received deploying task executionId [%s]", taskImmutableInfo.getExecutionId())); TaskGroup taskGroup = null; try { Set<ConnectorJarIdentifier> connectorJarIdentifiers = taskImmutableInfo.getConnectorJarIdentifiers(); Set<URL> jars = new HashSet<>(); ClassLoader classLoader; if (!CollectionUtils.isEmpty(connectorJarIdentifiers)) { // Prioritize obtaining the jar package file required for the current task execution // from the local, if it does not exist locally, it will be downloaded from the // master node. jars = serverConnectorPackageClient.getConnectorJarFromLocal( connectorJarIdentifiers); } else if (!CollectionUtils.isEmpty(taskImmutableInfo.getJars())) { jars = taskImmutableInfo.getJars(); } classLoader = classLoaderService.getClassLoader( taskImmutableInfo.getJobId(), Lists.newArrayList(jars)); if (jars.isEmpty()) { taskGroup = nodeEngine.getSerializationService().toObject(taskImmutableInfo.getGroup()); } else { taskGroup = CustomClassLoadedObject.deserializeWithCustomClassLoader( nodeEngine.getSerializationService(), classLoader, taskImmutableInfo.getGroup()); } logger.info( String.format( "deploying task %s, executionId [%s]", taskGroup.getTaskGroupLocation(), taskImmutableInfo.getExecutionId())); synchronized (this) { if (executionContexts.containsKey(taskGroup.getTaskGroupLocation())) { throw new RuntimeException( String.format( "TaskGroupLocation: %s already exists", taskGroup.getTaskGroupLocation())); } deployLocalTask(taskGroup, classLoader, jars); return TaskDeployState.success(); } } catch (Throwable t) { logger.severe( String.format( "TaskGroupID : %s deploy error with Exception: %s", taskGroup != null && taskGroup.getTaskGroupLocation() != null ? taskGroup.getTaskGroupLocation().toString() : "taskGroupLocation is null", ExceptionUtils.getMessage(t))); return TaskDeployState.failed(t); } }

کله چې د کارګر نوډ وظیفه ترلاسه کوي، دا د TaskExecutionService deployTask میتود ته زنګ وهي ترڅو دنده په پیل کې رامینځته شوي تار پول ته وسپاري.


کله چې دنده د تار پول ته وسپارل شي:

 private final class BlockingWorker implements Runnable { private final TaskTracker tracker; private final CountDownLatch startedLatch; private BlockingWorker(TaskTracker tracker, CountDownLatch startedLatch) { this.tracker = tracker; this.startedLatch = startedLatch; } @Override public void run() { TaskExecutionService.TaskGroupExecutionTracker taskGroupExecutionTracker = tracker.taskGroupExecutionTracker; ClassLoader classLoader = executionContexts .get(taskGroupExecutionTracker.taskGroup.getTaskGroupLocation()) .getClassLoader(); ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader(); Thread.currentThread().setContextClassLoader(classLoader); final Task t = tracker.task; ProgressState result = null; try { startedLatch.countDown(); t.init(); do { result = t.call(); } while (!result.isDone() && isRunning && !taskGroupExecutionTracker.executionCompletedExceptionally()); ... } }

د Task.call میتود غوښتنه شوې، او پدې توګه د معلوماتو همغږي کولو دندې واقعیا اجرا کیږي.

ClassLoader

په SeaTunnel کې، ډیفالټ ClassLoader د فرعي ټولګیو لومړیتوب ورکولو لپاره تعدیل شوی ترڅو د نورو برخو ټولګیو سره د شخړو مخه ونیسي:

 @Override public synchronized ClassLoader getClassLoader(long jobId, Collection<URL> jars) { log.debug("Get classloader for job {} with jars {}", jobId, jars); if (cacheMode) { // with cache mode, all jobs share the same classloader if the jars are the same jobId = 1L; } if (!classLoaderCache.containsKey(jobId)) { classLoaderCache.put(jobId, new ConcurrentHashMap<>()); classLoaderReferenceCount.put(jobId, new ConcurrentHashMap<>()); } Map<String, ClassLoader> classLoaderMap = classLoaderCache.get(jobId); String key = covertJarsToKey(jars); if (classLoaderMap.containsKey(key)) { classLoaderReferenceCount.get(jobId).get(key).incrementAndGet(); return classLoaderMap.get(key); } else { ClassLoader classLoader = new SeaTunnelChildFirstClassLoader(jars); log.info("Create classloader for job {} with jars {}", jobId, jars); classLoaderMap.put(key, classLoader); classLoaderReferenceCount.get(jobId).put(key, new AtomicInteger(1)); return classLoader; } }

د REST API کاري سپارل

SeaTunnel د REST API له لارې د دندې سپارلو ملاتړ هم کوي. د دې خصوصیت د فعالولو لپاره، د hazelcast.yaml فایل ته لاندې تشکیلات اضافه کړئ:

 network: rest-api: enabled: true endpoint-groups: CLUSTER_WRITE: enabled: true DATA: enabled: true

د دې ترتیب اضافه کولو وروسته، د هیزلکاسټ نوډ به د HTTP غوښتنې ترلاسه کولو توان ولري.


د دندې سپارلو لپاره د REST API کارول، پیرودونکي د HTTP غوښتنه لیږلو نوډ کیږي، او سرور د SeaTunnel کلستر دی.


کله چې سرور غوښتنه ترلاسه کړي ، نو دا به د غوښتنې URI پراساس مناسب میتود ته زنګ ووهي:

 public void handle(HttpPostCommand httpPostCommand) { String uri = httpPostCommand.getURI(); try { if (uri.startsWith(SUBMIT_JOB_URL)) { handleSubmitJob(httpPostCommand, uri); } else if (uri.startsWith(STOP_JOB_URL)) { handleStopJob(httpPostCommand, uri); } else if (uri.startsWith(ENCRYPT_CONFIG)) { handleEncrypt(httpPostCommand); } else { original.handle(httpPostCommand); } } catch (IllegalArgumentException e) { prepareResponse(SC_400, httpPostCommand, exceptionResponse(e)); } catch (Throwable e) { logger.warning("An error occurred while handling request " + httpPostCommand, e); prepareResponse(SC_500, httpPostCommand, exceptionResponse(e)); } this.textCommandService.sendResponse(httpPostCommand); }

د دندې سپارلو غوښتنې اداره کولو طریقه د لارې لخوا ټاکل کیږي:

 private void handleSubmitJob(HttpPostCommand httpPostCommand, String uri) throws IllegalArgumentException { Map<String, String> requestParams = new HashMap<>(); RestUtil.buildRequestParams(requestParams, uri); Config config = RestUtil.buildConfig(requestHandle(httpPostCommand), false); ReadonlyConfig envOptions = ReadonlyConfig.fromConfig(config.getConfig("env")); String jobName = envOptions.get(EnvCommonOptions.JOB_NAME); JobConfig jobConfig = new JobConfig(); jobConfig.setName( StringUtils.isEmpty(requestParams.get(RestConstant.JOB_NAME)) ? jobName : requestParams.get(RestConstant.JOB_NAME)); boolean startWithSavePoint = Boolean.parseBoolean(requestParams.get(RestConstant.IS_START_WITH_SAVE_POINT)); String jobIdStr = requestParams.get(RestConstant.JOB_ID); Long finalJobId = StringUtils.isNotBlank(jobIdStr) ? Long.parseLong(jobIdStr) : null; SeaTunnelServer seaTunnelServer = getSeaTunnelServer(); RestJobExecutionEnvironment restJobExecutionEnvironment = new RestJobExecutionEnvironment( seaTunnelServer, jobConfig, config, textCommandService.getNode(), startWithSavePoint, finalJobId); JobImmutableInformation jobImmutableInformation = restJobExecutionEnvironment.build(); long jobId = jobImmutableInformation.getJobId(); if (!seaTunnelServer.isMasterNode()) { NodeEngineUtil.sendOperationToMasterNode( getNode().nodeEngine, new SubmitJobOperation( jobId, getNode().nodeEngine.toData(jobImmutableInformation), jobImmutableInformation.isStartWithSavePoint())) .join(); } else { submitJob(seaTunnelServer, jobImmutableInformation, jobConfig); } this.prepareResponse( httpPostCommand, new JsonObject() .add(RestConstant.JOB_ID, String.valueOf(jobId)) .add(RestConstant.JOB_NAME, jobConfig.getName())); }

دلته منطق د مراجعینو اړخ ته ورته دی. له هغه ځایه چې هیڅ ځایی حالت شتون نلري ، نو سیمه ایز خدمت رامینځته کولو ته اړتیا نلري.


د پیرودونکي اړخ کې ، د ClientJobExecutionEnvironment ټولګي د منطقي پلان پارس کولو لپاره کارول کیږي ، او په ورته ډول ، د RestJobExecutionEnvironment ټولګي ورته دندې ترسره کوي.


کله چې دنده سپارل کیږي، که اوسنی نوډ ماسټر نوډ نه وي، دا به ماسټر نوډ ته معلومات واستوي. ماسټر نوډ به د دندې سپارلو په ورته ډول اداره کړي لکه څنګه چې دا د کمانډ لاین پیرودونکي څخه قوماندې اداره کوي.


که اوسنی نوډ ماسټر نوډ وي، نو دا به په مستقیم ډول د submitJob میتود ته زنګ ووهي، کوم چې د راتلونکی پروسس لپاره د coordinatorService.submitJob میتود غوښتنه کوي:

 private void submitJob( SeaTunnelServer seaTunnelServer, JobImmutableInformation jobImmutableInformation, JobConfig jobConfig) { CoordinatorService coordinatorService = seaTunnelServer.getCoordinatorService(); Data data = textCommandService .getNode() .nodeEngine .getSerializationService() .toData(jobImmutableInformation); PassiveCompletableFuture<Void> voidPassiveCompletableFuture = coordinatorService.submitJob( Long.parseLong(jobConfig.getJobContext().getJobId()), data, jobImmutableInformation.isStartWithSavePoint()); voidPassiveCompletableFuture.join(); }

د سپارلو دواړه میتودونه د سپارلو اړخ کې منطقي پلان پارس کول او بیا ماسټر نوډ ته د معلوماتو لیږل شامل دي. ماسټر نوډ بیا د فزیکي پلان تحلیل، تخصیص، او نور عملیات ترسره کوي.