Introduction
1.1. Io as the main source of mass for the magnetosphere
1.2. Stability and variability of the Io torus system
Review of the relevant components of the Io-Jupiter system
2.1. Volcanic activity: hot spots and plumes
2.3 Exosphere and atmospheric escape
2.5. Neutrals from Io in Jupiter’s magnetosphere
2.6. Plasma torus and sheet, energetic particles
3.2 Canonical number for mass supply
3.3 Transient events in the plasma torus, neutral clouds and nebula, and aurora
3.4 Gaps in understanding, contradictions, and inconsistencies
Future observations and methods and 4.1 Spacecraft measurements
Appendix, Acknowledgements, and References
List of terms relevant to the mass supply from Io
Active volcano
On Earth an active volcano is a structure that is either erupting or is likely to erupt in the future. A terrestrial active volcano which is not currently erupting, is known as a dormant volcano (while extinct volcanoes are not expected to become active again). On Io, every volcano is probably either active or dormant.
We note also that from the perspective of hot spot detections or other measurements of volcanic activity at Io, it has not been possible to identify different states or levels of the global volcanic activity. This means there are no indications of general “volcanically active” or “volcanic quiet” periods (yet).
Hot spot
This term has different definitions depending on context. It is best to specify mantle hot spot, volcanic hot spot, or IR hot spot. A mantle hot spot may manifest itself as seismic anomalies, elevated topography, gravity anomaly, concentration of volcanoes, etc. A volcanic hot spot is any evidence for current or recent volcanic activity, such as eruptions observed and recorded by humans, gas venting, or volcanic deposits with very young radiometric dates. Io astronomers call a remotely-sensed IR emission enhancement that is clearly above the expected background emission a hot spot, an observational definition, maybe best called an IR hot spot.
Volcanic eruption
Generally, a volcanic eruption is an event when lava and/or gases are expelled from a volcanic site through a vent or fissure. At Io, the term eruption is primarily used for detection of a hot spot, i.e., thermal emission from hot lava. This is the only type of observations taken with sufficient cadence and coverage to actually infer temporal activity changes and thus observe and define an eruption event. The cadence of detections of (large) dust (or gas) plumes determined by the availability and timelines for plume activities are hardly constrained yet.
Plume (gas vs dust)
A plume consists of gas and particulates rising from a volcanic source often creating a large umbrella-shaped structure capped by a gasdynamic shockwave. Plume constituents may move differently and form umbrellas or jets within umbrellas, for example with large grains forming a more compact shape within a much larger gas canopy. Ionian plumes tend to be dense enough to be collisional (intermolecular collisions matter to the dynamics and molecules/grains do not simply move ballistically).
Stealth plume
A predominantly gaseous plume that has an insufficient dust component to make it detectable in visible light. The most and most well known images of Io’s plumes show them through Mie scattering of solar light in the visible, often at high phase angles (forward scattering). If there is very little dust in plumes and only gas, they are not seen in visible images.
Plume type (Pele vs Prometheus)
The size of a plume depends on the energy given to the rising gas/particle flow at the source. Giant Pele-class plumes appear to be sourced directly from hot lavas, perhaps a bubbling lava lake, and rise 200-400 km and have a high gas-to-dust mass ratio. Smaller (50-70 km high) Prometheus-class plumes contain more dust and appear to arise from a region where lava is encroaching upon pre-existing sulfur dioxide ice.
Source for the bound atmosphere
The most recent observational studies suggest that both sublimation of surface SO2 frost and direct outgassing at volcanic sites sustain Io’s bulk dayside atmosphere. There are mutual effects between the two sources and atmospheric parts. Sublimation equilibrium is maintained above frost patches on the dayside but most of the SO2 should condense at night. A source rate can not be defined in this dynamic atmosphere.
Atmospheric mass loss
Neutral gas lost from Io’s gravitationally bound atmosphere and corona to space (not to the surface). Material is lost as neutrals through acceleration (above the exobase) to velocities higher than the escape speed (through various processes including collisions with plasma, heating of the neutrals or recombination), or as ions through local ionization and pick-up by the magnetic field. The fraction lost as neutrals at velocities below Jupiter’s escape velocity at Io’s distance (25 km/s in the reference frame of Jupiter) feeds into the neutral clouds. Neutrals with effective velocity exceeding the Jupiter escape speed populate the extended nebulae and leave the system. Locally ionized material is supplied to the plasma torus directly.
Mass loss from Io
The total mass loss from Io is the atmospheric mass loss plus direct mass loss (thermal or sputtered) from the solid surface or direct escape from volcanic plumes. Both loss from surface and volcanic plume escape are likely much smaller than the atmospheric mass loss and thus the mass loss from Io is nearly identical to the atmospheric mass loss. Loss from the surface is likely small because the shielding atmosphere is even sustained in absence of sunlight by volcanoes as recently shown. The velocity of ejected plume gas (or dust particulates) is well below Io’s escape (less than half for the largest plumes) velocity and the plumes interact with the sublimated atmosphere.
The mass loss from Io is larger than the neutral source rate for the torus (assuming Io is the only viable source). This is because some processes eject neutrals at a velocity larger than Jupiter’s escape velocity at the orbit of Io (25 km/s), which are then lost to the Io/Jupiter system and do not contribute to the supply.
Canonical number / Neutral source rate
Production of fresh torus plasma (ions) through ionization of neutrals (kg/s or particles/s) from the neutral clouds or Io’s neutral atmosphere. Ionization and ion-neutral collisions supply slow ions (and electrons) to the torus, which are then accelerated to corotate contributing to the supply of energy powering the torus UV emissions (the other significant energy contribution is hot electrons ~40-400 eV). To sustain the balance, the supply of new slow ions equals the rate at which neutrals must be resupplied, and therefore it is often called the neutral source rate in Neutral Cloud Theory modeling. The rate of this generation of fresh ions (and corresponding destruction of (atomic) neutral) was estimated based on the emitted energy at ~ 1 ton/s or (1-3)x1028 particles/s of S and O neutrals. This value is the canonical number of mass transfer frequently cited in the literature, yet often inaccurately for related but not identical processes like the mass loss from Io’s atmosphere (which is larger) or the net torus mass-loading rate (which is lower and only from ionization and not ion-neutral collisions).
Local torus ion supply at Io
The number of ions coming directly from Io has been estimated from the J0 pass of Galileo through the Io wake (Bagenal et al., 1997) at 18-58% of the canonical 1 tons/s. This ion loss rate was further refined to ~300 kg/s (Saur et al., 2003; Dols et al., 2008), which amounts to roughly 20% of the rate of neutrals being supplied to the neutral clouds from Io (see canonical number). As the magnetic field is slowed down in the vicinity of Io, the energization from pick-up of the ions generated in this region is significantly lower and likely negligible compared to the ionization in the neutral clouds at full corotation.
Torus mass-loading
Net production of plasma (ions) in the torus due to ionization of the extended neutral clouds and Io’s atmosphere. This is smaller than the neutral source rate, because charge exchange and momentum transfer collisions do not change the net number of ions in the plasma torus. Instead, a co-rotating ion is lost in the same process as a new slow ion is generated as well as a fast neutral, and the latter is lost from the system. This net source of torus plasma is balanced primarily by losses from effective radially outward transport.
Mass loss from the Jupiter system
Combined loss of ions and neutrals from Jupiter’s magnetosphere and gravity field. Is expected to be similar to the mass loss from Io, since no other substantial loss pathways are known.
Momentum transfer
Newly generated torus plasma has little to zero momentum. The plasma is then accelerated by the corotating local magnetic field effectively transferring momentum to the plasma flow from the angular momentum of Jupiter’s ionosphere, which is collisionally coupled to the planet’s upper atmosphere.
Atmospheric sputtering
A process in which high-energy particles, either ions or atoms, collide with the atmosphere neutrals, causing the ejection or removal of atoms or molecules from the atmosphere. The process itself is similar to the surface (knock-out) sputtering, but the cascade/recoil processes are localized in few scale-heights instead of few nm. The yield (Y) for this process is defined as the average number of target neutrals released per incident projectile. For each sputtered particle, a cascade of multiple collisions is usually necessary. Atmospheric loss by sputtering has been assumed in a series of publications to model the formation of the Na extended cloud (Banana cloud) and O and S extended clouds. Surface sputtering rate at Io is negligible on the dayside hemisphere but may contribute to some neutral losses at night or in eclipse.
Ion/neutral elastic collisions
Collisions that conserve both the momentum and kinetic energy of the incoming particles.
Charge exchange
Process that occurs when a molecule or atom (neutral or not) collides with a charged ion and one or more electrons are transferred from one to the other. In the case for Io, the most common reactions happen between atoms of O and S and molecules of SO2 , charged or not. The charge exchange rates/cross sections depend on the relative velocity of the colliding particles, which is ~60 km/s for the corotation plasma at Io's radial distance. If there is a (slow gravitational bound) neutral atom is produced, it will have roughly the corotation speed of th ion, which in this case is enough to escape the Jupiter system. This is the main mechanism of generation of ENAs. Charge exchange processes are considered to dominate the production of oxygen and sulfur ions inside Io's orbit, although it does not change significantly the net ionization level of the plasma, and are, along with electron-impact ionization, the main contributor to the torus mass-loading.
Joule heating
j.E with j the electric current density and E the electric field. For the choice of the rest-frame of the electric field see Vasyliūnas and Song, 2005.
Pick-Up process
Process of entrainment of freshly ionized neutrals initially at rest in Io’s reference frame (in Io’s atmosphere or in Io’s extended neutral clouds) in the torus plasma flow. Fresh ions resulting from electron-impact ionization, photo-ionization or charge exchange in Io’s atmosphere (or in neutral clouds) experience an ExB drift in the frame of Io. They are entrained in the local bulk flow of the plasma (corresponding to the velocity of their gyrocenter) and also start a gyromotion at the local flow velocity. In the frame of Io, the trajectories of pick-up ions (and electrons) are cycloids perpendicular to the local magnetic field. An O or S ion picked-up in the neutral cloud at the corotation velocity ~ 60 km/s results in a supply of energy to the torus of 270 eV and 540 eV respectively, larger than the average ion energy of the torus ~100 eV. Ions picked-up in the atmosphere of Io result either in a local heating or cooling of the plasma depending on the velocity of the local plasma flow around Io where the pickup process takes place (slower than corotation close to Io, and accelerated on the flanks of Io)
Io-genic material
Neutral gas, plasma or dust in the Jovian system that ultimately originates from the interior or surface of Io. The majority of all sulfur (S) and sodium (Na) material is likely from Io, while there are possible other viable sources for H (Jupiter) and O (icy moons).
Exobase
The general definition is given in Section 2.3. As Io’s atmospheric density and temperature vertical distributions are still unknown, the exobase altitude is still undetermined. A wide range of estimates of the exobase altitudes have been given in the literature, ranging from several thousand kilometers to a few tens of kilometers on the dayside atmosphere, down to Io’s surface in eclipse. Our ISSI group consensus places the exobase at a few hundred kilometers, based on numerical simulations of the plasma properties along the Galileo flybys of Io, atmospheric modeling that includes the plasma/atmosphere interaction, and OI (630 nm) emissions, which can be collisionally quenched within the 110s radiative lifetime yet glow closely to Io’s limb (Geissler et al., 1999; 2004), precluding higher exobase altitudes.
Io corona (exosphere)
Neutral gas bound to Io beyond the exobase of Io. In this region, the gases are non-collisional but still bound gravitationally to Io. It extends in the Hill sphere (~5.8 RIo with RIo ~ 1821 km) and smoothly merges with the neutral clouds. Atomic O and S neutral coronae have been detected by HST in the UV, extending radially to ~10 RIo in all directions (Wolven et al., 2001). Energetic ion absorption features detected by Galileo far from Io are also consistent with an extended corona but the neutral species cannot be determined (Huybrighs et al., 2024). Electro-Magnetic Ion Cyclotron waves (EMIC) at the SO+ and SO2 + gyro frequencies have been observed by Galileo extending as far as ~7-20 Rio from Io in the downstream direction (Russell et al., 2003), which suggests a pickup process in extended SO2 and SO coronae.
Neutral cloud(s)
Structures of neutral gas extending along Io’s orbit, subjected to the gravitational field of Jupiter. These neutral clouds are fed by the plasma-atmosphere interaction at Io and are shaped by magnetospheric loss processes. Depending mostly on the ionization energy of the neutrals, these clouds have a limited extension along Io’s orbit (Na banana cloud, S cloud etc.). The use of plural in clouds originates from the different species and different shapes of the neutral structures (Figure 15, Section 2.5). They can also encompass the whole Io orbit as for atomic O (Koga et al., 2018a; Smith et al., 2022; Section 2.5) and can in that sense also be named neutral torus or tori. However, in stark contrast to the azimuthally rather homogeneous plasma torus, the neutral density is significantly larger close to Io for all species and we propose neutral clouds as the general term. The S and O neutral clouds are (likely) the main source of plasma for the torus (~80%).
Banana, jet, and stream
The banana, jet, and stream terminology in extended neutral cloud structures derives from sodium studies (e.g., Smyth and Combi, 1988b; Wilson et al., 2002), but has been broadly applied to other species in existing literature (see Section 2.5 for more details).
Neutral nebulae / sodium nebula
Neutral gas abundance that extends more than 100 (1000?) RJ around Jupiter and is not subject to the gravitational field of Jupiter. The only nebula observed so far is the Na nebula (also sometimes called Mendillo-disc after Mendillo et al., 1990) fed by neutral sodium ejection from Io’s atmosphere or Io’s torus at velocity larger than the escape velocity at the orbit of Io (25 km/s in the Jovian reference frame). The existence of nebulae in the major species O and S (and maybe SO and SO2) is suspected to exist but has not yet been detected. In the analysis of images, the emissions are analyzed in differently extended regions, like up to a radial distance of 25 RJ (with much contribution from the neutral cloud in the signal), or up to 100 RJ (with relatively more contributions from the nebulae).
Io plasma torus
The Io plasma torus is a structure that encompasses the orbit of Io and is mainly composed of S and O multiply-charged ions. It comprises three main regions: (1) the warm torus, (2) the ribbon, and (3) the cold torus.
Transient torus event / brightening / enhancement
Identified by an intensification of UV or optical ion emissions from the plasma torus for a limited period of usually 1-3 months w.r.t. a common stable background level. Such intensification is commonly explained by an enhanced mass loading of the torus, which leads to a higher density and possibly temperature in the torus causing the brighter emissions.
Plasma sheet
Structure of plasma in the magnetosphere, radially beyond the warm torus (beyond ~7-10 R_J) and out to roughly 30 RJ where the density drops below 1/cm3 . It is sourced from the effective radially outward transport of torus Io-genic material. The plasma in the plasma sheet is mostly corotating but corotation breaks down between 20-30 RJ. Ion and electron temperatures increase with radial distance, thus are higher in the plasma sheet than in the warm torus.
Io local aurora
Electron or ion impact excited emission from Io’s atmosphere. This choice of nomenclature is non-unique as no universal definition of aurora exists and many authors require in their definition active electron acceleration as part of the auroral processes. The latter is not the case at Io, i.e., electrons are not actively accelerated near Io in contrast to Ganymede.
Auroral footprint
Electron or ion impact excited emission from Jupiter’s atmosphere triggered by Io. Charged particle acceleration is powered by Io’s electrodynamic interaction with Jupiter’s magnetosphere. Particles are accelerated along the Alfvén wings connecting Io with Jupiter. Among the three auroral moon footprints that are clearly recognizable, Io’s one is considerably brighter, and always visible both in UV and IR. Especially in IR, the Io’s auroral footprint shows some structure, like secondary spots or a tail, at preceding and posterior longitudes (Section 2.7). Some of these structures are caused by the reflections of the Alfvén waves on speed gradients, and they depend on the latitudinal location of the moon within the plasma sheet, while part of the fine morphology of the footprint still seeks for a clear explanation.
This review is based on discussions within International Team project #515 (“Mass Loss from Io's Unique Atmosphere: Do Volcanoes Really Control Jupiter's Magnetosphere?”) funded by the International Space Science Institute (ISSI) in Bern. LR is supported by the Swedish National Space Agency through grant 2021-00153. Further travel support from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) is acknowledged. We thank Márton Galbács very much for preparing the sketch in Figure 10. HH is supported by a DIAS Research Fellowship in Astrophysics. HH gratefully acknowledges financial support from Khalifa University’s Space and Planetary Science Center (Abu Dhabi, UAE) under Grant no. KU-SPSC-8474000336. CS acknowledges the support of NASA through programs 80NSSC21K1138 and 80NSSC22K0954, and the NSF through program AST-2108416. KdK acknowledges funding from the National Science Foundation grant 2238344 through the Faculty Early Career Development Program. SVB was supported by STFC Fellowship and grant ST/M005534/1 and ST/V000748/1. CT, RK, MK, and FT are supported by JSPS KAKENHI under Grant Number 20KK0074. AB is supported by the Volkswagen Foundation Grant Az 97742.
Ackley, P. C., Hoey, W. A., Trafton, L. M., Goldstein, D. B., & Varghese, P. L. (2021). Hybrid dust-tracking method for modeling Io's Tvashtar volcanic plume. Icarus, 359, 114274. https://doi.org/10.1016/j.icarus.2020.114274
Austin, J. V., & Goldstein, D. B. (2000). Rarefied gas model of Io's sublimation-driven atmosphere. Icarus, 148(2), 370-383. https://doi.org/10.1006/icar.2000.6466
Badman, S. V., Bonfond, B., Fujimoto, M., Gray, R. L., Kasaba, Y., Kasahara, S., ... & Yoshioka, K. (2016). Weakening of Jupiter's main auroral emission during January 2014. Geophysical Research Letters, 43(3), 988-997. https://doi.org/10.1002/2015GL067366
Bagenal, F. (1994). Empirical model of the Io plasma torus: Voyager measurements. Journal of Geophysical Research: Space Physics, 99(A6), 11043-11062. https://doi.org/10.1029/93JA02908
Bagenal, F. (1997). The ionization source near Io from Galileo wake data. Geophysical research letters, 24(17), 2111-2114. https://doi.org/10.1029/97GL02052
Bagenal, F., Crary, F. J., Stewart, A. I. F., Schneider, N. M., Gurnett, D. A., Kurth, W. S., ... & Paterson, W. R. (1997). Galileo measurements of plasma density in the Io torus. Geophysical research letters, 24(17), 2119-2122. https://doi.org/10.1029/97GL01254
Bagenal, F., & Dols, V. (2020). The space environment of Io and Europa. Journal of Geophysical Research: Space Physics, 125(5), e2019JA027485. https://doi.org/10.1029/2019JA027485
Bagenal, F., & Dols, V. (2023). Space Environment of Io. Io: A New View of Jupiter’s Moon, 291-322. https://doi.org/10.1007/978-3-031-25670-7_9
Barbosa, D. D., & Kivelson, M. G. (1983). Dawn‐dusk electric field asymmetry of the Io plasma torus. Geophysical Research Letters, 10(3), 210-213. https://doi.org/10.1029/GL010i003p00210
Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Oxford university press. https://doi.org/10.1093/oso/9780198561958.001.0001
Blanco‐Cano, X., Russell, C. T., & Strangeway, R. J. (2001). The Io mass‐loading disk: Wave dispersion analysis. Journal of Geophysical Research: Space Physics, 106(A11), 26261-26275. https://doi.org/10.1029/2001JA900090
Blöcker, A., Saur, J., Roth, L., & Strobel, D. F. (2018). MHD modeling of the plasma interaction with Io's asymmetric atmosphere. Journal of Geophysical Research: Space Physics, 123(11), 9286-9311. https://doi.org/10.1029/2018JA025747
Blöcker, A., Roth, L., Ivchenko, N., & Hue, V. (2020). Variability of Io’s poynting flux: A parameter study using MHD simulations. Planetary and Space Science, 192, 105058. https://doi.org/10.1016/j.pss.2020.105058
Bonfond, B., Grodent, D., Gérard, J. C., Stallard, T., Clarke, J. T., Yoneda, M., ... & Gustin, J. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL050253
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., ... & McElroy, M. B. (1979). Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science, 204(4396), 979-982. DOI: 10.1126/science.204.4396.979
Brown, R. A., & Chaffee Jr, F. H. (1974). High-resolution spectra of sodium emission from Io. Astrophysical Journal, vol. 187, p. L125, 187, L125. DOI: 10.1086/181413
Brown, R. A. (1976). A model of Jupiter's sulfur nebula. The Astrophysical Journal, 206, L179-L183. DOI: 10.1086/182162
18) Brown, R. A. (1981). The Jupiter hot plasma torus-Observed electron temperature and energy flows. Astrophysical Journal, Part 1, vol. 244, Mar. 15, 1981, p. 1072-1080., 244, 1072-1080. https://doi.org/10.1086/158777
19) Brown, M. E., & Bouchez, A. H. (1997). The response of Jupiter's magnetosphere to an outburst on Io. Science, 278(5336), 268-271. DOI: 10.1126/science.278.5336.268
20) Brown, M. E. (2001). Potassium in Europa's Atmosphere. Icarus, Volume 151, Issue 2, 190-195. https://doi.org/10.1006/icar.2001.6612.
21) Burger, M. H., Schneider, N. M., & Wilson, J. K. (1999). Galileo's close‐up view of the Io sodium jet. Geophysical research letters, 26(22), 3333-3336. https://doi.org/10.1029/1999GL003654
22) Burger, M. H., & Johnson, R. E. (2004). Europa's neutral cloud: Morphology and comparisons to Io. Icarus, 171(2), 557-560. https://doi.org/10.1016/j.icarus.2004.06.014
23) Cantrall, C., de Kleer, K., de Pater, I., Williams, D. A., Davies, A. G., & Nelson, D. (2018). Variability and geologic associations of volcanic activity on Io in 2001–2016. Icarus, 312, 267-294. https://doi.org/10.1016/j.icarus.2018.04.007
24) Carlson, R. W., Kargel, J. S., Douté, S., Soderblom, L. A., & Dalton, J. B. (2007). Io’s surface composition. Io after galileo, 193-229. https://doi.org/10.1007/978-3-540-48841-5
25) Chickos, J. S., & Acree Jr, W. E. (2003). Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. Journal of physical and chemical reference data, 32(2), 519-878.
26) Coffin, D., Damiano, P., Delamere, P., Johnson, J., & Ng, C. S. (2022). Broadband energization of superthermal electrons in Jupiter’s inner magnetosphere. Journal of Geophysical Research: Space Physics, 127(8), e2022JA030528. https://doi.org/10.1029/2022JA030528
27) Copper, M., Delamere, P. A., & Overcast‐Howe, K. (2016). Modeling physical chemistry of the Io plasma torus in two dimensions. Journal of Geophysical Research: Space Physics, 121(7), 6602-6619. https://doi.org/10.1002/2016JA022767
28) Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10-11), 1067-1088. https://doi.org/10.1016/S0032-0633(00)00167-7
29) Crary, F. J., & Bagenal, F. (2000). Ion cyclotron waves, pickup ions, and Io's neutral exosphere. Journal of Geophysical Research: Space Physics, 105(A11), 25379-25389. https://doi.org/10.1029/2000JA000055
30) Davies, A. G. (1996). Io's volcanism: Thermo-physical models of silicate lava compared with observations of thermal emission. Icarus, 124(1), 45-61. https://doi.org/10.1006/icar.1996.0189
31) Davies, A. G., Keszthelyi, L. P., Williams, D. A., Phillips, C. B., McEwen, A. S., Lopes, R. M., ... & Carlson, R. W. (2001). Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. Journal of Geophysical Research: Planets, 106(E12), 33079-33103. https://doi.org/10.1029/2000JE001357
32) Davies, A.G. (2007). Volcanism on Io: A Comparison with Earth. Cambridge: Cambridge University Press (Cambridge Planetary Science). https://doi.org/10.1017/CBO9781107279902
33) De Becker, A., Head, L. A., Bonfond, B., Jehin, E., Manfroid, J., Yao, Z., ... & Benkhaldoun, Z. (2023). A study of Io’s sodium jets with the TRAPPIST telescopes. Astronomy & Astrophysics, 680, A3. https://doi.org/10.1051/0004-6361/202347447
34) de Kleer, K., & de Pater, I. (2016a). Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013–2015. Icarus, 280, 378-404. https://doi.org/10.1016/j.icarus.2016.06.019
35) de Kleer, K., de Pater, I., Molter, E. M., Banks, E., Davies, A. G., Alvarez, C., ... & Tollefson, J. (2019). Io’s volcanic activity from time domain adaptive optics observations: 2013–2018. The Astronomical Journal, 158(1), 29. DOI 10.3847/1538-3881/ab2380
36) de Kleer, K., & Rathbun, J. A. (2023). Io’s Thermal Emission and Heat Flow. Io: A New View of Jupiter’s Moon, 173-209. https://doi.org/10.1007/978-3-031-25670-7_6
37) de Kleer, K., Hughes, E.C., Nimmo, F., Eiler, F., Hofmann, A.E., Luszcz-Cook, S., Mandt, K. Isotopic evidence of long-lived volcanism on Io. Science, accepted.
38) de Pater, I., Roe, H., Graham, J. R., Strobel, D. F., & Bernath, P. (2002). Detection of the Forbidden SO a1Δ→ X3Σ− Rovibronic Transition on Io at 1.7 μm. Icarus, 156(1), 296-301. https://doi.org/10.1006/icar.2001.6787
39) de Pater, I., Laver, C., Davies, A. G., de Kleer, K., Williams, D. A., Howell, R. R., ... & Spencer, J. R. (2016). Io: Eruptions at Pillan, and the time evolution of Pele and Pillan from 1996 to 2015. Icarus, 264, 198-212. https://doi.org/10.1016/j.icarus.2015.09.006
40) de Pater, I., De Kleer, K., & Ádámkovics, M. (2020). High spatial and spectral resolution observations of the forbidden 1.707 μm rovibronic SO emissions on Io: Evidence for widespread stealth volcanism. The Planetary Science Journal, 2(1), 29. DOI: 10.3847/PSJ/ab9eb1
41) de Pater, I., Luszcz-Cook, S., Rojo, P., Redwing, E., De Kleer, K., & Moullet, A. (2021a). ALMA Observations of Io Going into and Coming out of Eclipse. The Planetary Science Journal, 1(3), 60. DOI:10.3847/PSJ/abb93d
42) de Pater, I., Keane, J. T., de Kleer, K., & Davies, A. G. (2021b). A 2020 observational perspective of Io. Annual Review of Earth and Planetary Sciences, 49, 643-678. https://doi.org/10.1146/annurev-earth-082420-095244
43) de Pater, I., Lellouch, E., Strobel, D. F., de Kleer, K., Fouchet, T., Wong, M. H., ... & Tosi, F. (2023). An energetic eruption with associated SO 1.707 micron emissions at Io's Kanehekili Fluctus and a brightening event at Loki Patera observed by JWST. Journal of Geophysical Research: Planets, 128(8), e2023JE007872. https://doi.org/10.1029/2023JE007872
44) Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C. S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter's magnetosphere. Geophysical Research Letters, 46(6), 3043-3051. https://doi.org/10.1029/2018GL081219
45) Davies, A. G. (1996) Io's Volcanism: Thermo-Physical Models of Silicate Lava Compared with Observations of Thermal Emission. Icarus, Volume 124, Issue 1, pp. 45-61. DOI:10.1006/icar.1996.0189
46) Delamere, P. A., & Bagenal, F. (2003). Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research: Space Physics, 108(A7) https://doi.org/10.1029/2002JA009706
47) Delamere, P. A., Steffl, A., & Bagenal, F. (2004). Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research: Space Physics, 109(A10). https://doi.org/10.1029/2003JA010354
48) Delamere, P. A., Bagenal, F., & Steffl, A. (2005). Radial variations in the Io plasma torus during the Cassini era. Journal of Geophysical Research: Space Physics, 110(A12). https://doi.org/10.1029/2005JA011251
49) Dessler, A. J. (1980). Mass-injection rate from Io into the Io plasma torus. Icarus, 44(2), 291-295. https://doi.org/10.1016/0019-1035(80)90024-X
50) Durrance, S. T., Feldman, P. D., Blair, W. P., Davidsen, A. F., Kriss, G. A., Kruk, J. W., ... & Moos, H. W. (1995). Neutral sulfur emission from the Io torus measured with the Hopkins Ultraviolet Telescope. Astrophysical Journal v. 447, p. 408, 447, 408. https://doi.org/10.1086/175884
51) Dols, V., Delamere, P. A., & Bagenal, F. (2008). A multispecies chemistry model of Io's local interaction with the Plasma Torus. Journal of Geophysical Research: Space Physics, 113(A9). https://doi.org/10.1029/2007JA012805
52) Dols, V., Delamere, P. A., Bagenal, F., Kurth, W. S., & Paterson, W. R. (2012). Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys. Journal of Geophysical Research: Planets, 117(E10). https://doi.org/10.1029/2012JE004076
53) Dols, V., & Johnson, R. E. (2023). Ion-molecule charge exchange in Io's extended atmosphere: Velocity dependence. Icarus, 392, 115365. https://doi.org/10.1016/j.icarus.2022.115365
54) Durrance, S. T., Feldman, P. D., & Weaver, H. A. (1983). Rocket detection of ultraviolet emission from neutral oxygen and sulfur in the Io torus. Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), vol. 267, April 15, 1983, p. L125-L129., 267, L125-L129. DOI: 10.1086/184016
55) Ewing, C. T., & Stern, K. H. (1974). Equilibrium vaporization rates and vapor pressures of solid and liquid sodium chloride, potassium chloride, potassium bromide, cesium iodide, and lithium fluoride. The Journal of Physical Chemistry, 78(20), 1998-2005.
56) Feaga, L. M., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2004). Detection of atomic chlorine in Io’s atmosphere with the Hubble Space Telescope GHRS. The Astrophysical Journal, 610(2), 1191. DOI: 10.1086/421862
57) Feaga, L. M., McGrath, M., & Feldman, P. D. (2009). Io's dayside SO2 atmosphere. Icarus, 201(2), 570-584. https://doi.org/10.1016/j.icarus.2009.01.029
58) Flynn, B., Mendillo, M., & Baumgardner, J. (1994). The Jovian sodium nebula: Two years of ground‐based observations. Journal of Geophysical Research: Planets, 99(E4), 8403-8409. https://doi.org/10.1029/93JE02140
59) Frank, L. A., & Paterson, W. R. (2000). Observations of plasmas in the Io torus with the Galileo spacecraft. Journal of Geophysical Research: Space Physics, 105(A7), 16017-16034. https://doi.org/10.1029/1999JA000250
60) Futaana, Y., Barabash, S., Wang, X. D., Wieser, M., Wieser, G. S., Wurz, P., ... & Pontus, C. (2015). Low-energy energetic neutral atom imaging of Io plasma and neutral tori. Planetary and space science, 108, 41-53. https://doi.org/10.1007/s11214-017-0362-8
61) Geissler, P. E., McEwen, A. S., Ip, W., Belton, M. J. S., Johnson, T. V., Smyth, W. H., & Ingersoll, A. P. (1999). Galileo imaging of atmospheric emissions from Io. Science, 285(5429), 870-874. https://doi.org/10.1126/science.285.5429.870
62) Geissler, P. E. (2003). Volcanic activity on Io during the Galileo era. Annual review of earth and planetary sciences, 31(1), 175-211. https://doi.org/10.1146/annurev.earth.31.100901.145428
63) Geissler, P., McEwen, A., Porco, C., Strobel, D., Saur, J., Ajello, J., & West, R. (2004). Cassini observations of Io's visible aurorae. Icarus, 172(1), 127-140. https://doi.org/10.1016/j.icarus.2004.01.008
64) Geissler, P. E., & Goldstein, D. B. (2007). Plumes and their deposits. Io After Galileo, 163-192. https://doi.org/10.1007/978-3-540-48841-5
65) Geissler, P. E., & McMillan, M. T. (2008). Galileo observations of volcanic plumes on Io. Icarus, 197(2), 505-518. https://doi.org/10.1016/j.icarus.2008.05.005
66) Giono, G., & Roth, L. (2021). Io's SO2 atmosphere from HST Lyman-α images: 1997 to 2018. Icarus, 359, 114212. https://doi.org/10.1016/j.icarus.2020.114212
67) Goertz, C. K. (1973). The Io-controlled decametric radiation. Planetary and Space Science, 21(8), 1431-1445. https://doi.org/10.1016/0032-0633(73)90234-1
68) Goldreich, P., & Lynden-Bell, D. (1969). Io, a Jovian unipolar inductor. The Astrophysical Journal, 156, 59-78. DOI: 10.1086/149947
69) Graps, A. L., Grün, E., Svedhem, H., Krüger, H., Horányi, M., Heck, A., & Lammers, S. (2000). Io as a source of the Jovian dust streams. Nature, 405(6782), 48-50. https://doi.org/10.1038/35011008
70) Grava, C., Schneider, N. M., Leblanc, F., Morgenthaler, J. P., Mangano, V., & Barbieri, C. (2014). Solar control of sodium escape from Io. Journal of Geophysical Research: Planets, 119(3), 404-415. https://doi.org/10.1002/2013JE004504
71) Grava, C., Cassidy, T. A., Schneider, N. M., Hsu, H. W., Morgenthaler, J. P., Leblanc, F., ... & Barbieri, C. (2021). A Possible Dust Origin for an Unusual Feature in Io’s Sodium Neutral Clouds. The Astronomical Journal, 162(5), 190. DOI: 10.3847/1538-3881/ac1ff8
72) Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187, 23-50. https://doi.org/10.1007/s11214-014-0052-8
73) Grodent, D., Bonfond, B., Yao, Z., Gérard, J. C., Radioti, A., Dumont, M., ... & Valek, P. (2018). Jupiter's aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123(5), 3299-3319. https://doi.org/10.1002/2017JA025046
74) Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., ... & Taylor, A. (1993a). Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362(6419), 428-430. https://doi.org/10.1038/362428a0
75) Grün, E., Gebhard, J., Bar‐Nun, A., Benkhoff, J., Düren, H., Eich, G., ... & Thomas, H. (1993b). Development of a dust mantle on the surface of an insolated ice‐dust mixture: results from the KOSI‐9 experiment. Journal of Geophysical Research: Planets, 98(E8), 15091-15104. https://doi.org/10.1029/93JE01134
76) Grün, E., Krüger, H., Graps, A. L., Hamilton, D. P., Heck, A., Linkert, G., ... & Srama, R. (1998). Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. Journal of Geophysical Research: Planets, 103(E9), 20011-20022. https://doi.org/10.1029/98JE00228
77) Haff, P. K., & Watson, C. C. (1979). The erosion of planetary and satellite atmospheres by energetic atomic particles. Journal of Geophysical Research: Solid Earth, 84(B14), 8436-8442. https://doi.org/10.1029/JB084iB14p08436
78) Haff, P. K., Watson, C. C., & Yung, Y. L. (1981). Sputter ejection of matter from Io. Journal of Geophysical Research: Space Physics, 86(A8), 6933-6938. https://doi.org/10.1029/JA086iA08p06933
79) Heays, A. N., Bosman, A. V., & Van Dishoeck, E. F. (2017). Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astronomy & Astrophysics, 602, A105. DOI: 10.1051/0004-6361/201628742
80) Herbert, F., Schneider, N. M., & Dessler, A. J. (2008). New description of Io's cold plasma torus. Journal of Geophysical Research: Space Physics, 113(A1). https://doi.org/10.1029/2007JA012555
81) Hess, S. L. G., Delamere, P. A., Bagenal, F., Schneider, N., & Steffl, A. J. (2011). Longitudinal modulation of hot electrons in the Io plasma torus. Journal of Geophysical Research: Space Physics, 116(A11). https://doi.org/10.1029/2011JA016918
82) Hess, S. L. G., Bonfond, B., Chantry, V., Gérard, J. C., Grodent, D., Jacobsen, S., & Radioti, A. (2013). Evolution of the Io footprint brightness II: Modeling. Planetary and Space Science, 88, 76-85, https://doi.org/10.1016/j.pss.2013.08.005
83) Hikida, R., Yoshioka, K., Tsuchiya, F., Kagitani, M., Kimura, T., Bagenal, F., ... & Yoshikawa, I. (2020). Spatially asymmetric increase in hot electron fraction in the Io plasma torus during volcanically active period revealed by observations by Hisaki/EXCEED from November 2014 to May 2015. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027100. https://doi.org/10.1029/2019JA027100
84) Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research: Space Physics, 84(A11), 6554-6558. https://doi.org/10.1029/JA084iA11p06554
85) Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research: Space Physics, 106(A5), 8101-8107. https://doi.org/10.1029/2000JA000302
86) Hill, T. W. (2006). Effect of the acceleration current on the centrifugal interchange instability. Journal of Geophysical Research: Space Physics, 111(A3). https://doi.org/10.1029/2005JA011338
87) Hoey, W. A., Trafton, L. M., Ackley, P. C., Goldstein, D. B., & Varghese, P. L. (2021). Variations in the canopy shock structures of massive extraterrestrial plumes: Parametric DSMC simulation of 2007 Tvashtar observations. Icarus, 363, 114431. https://doi.org/10.1016/j.icarus.2021.114431
88) Horányi, M., Grün, E., & Heck, A. (1997). Modeling the Galileo dust measurements at Jupiter. Geophysical Research Letters, 24(17), 2175-2178. https://doi.org/10.1029/97GL01539
89) Huang, X., Gu, H., Cui, J., Sun, M., & Ni, Y. (2023). Non‐Thermal Escape of Sulfur and Oxygen on Io Driven by Photochemistry. Journal of Geophysical Research: Planets, 128(9), e2023JE007811.
90) Huddleston, D. E., Strangeway, R. J., Warnecke, J., Russell, C. T., & Kivelson, M. G. (1998). Ion cyclotron waves in the Io torus: Wave dispersion, free energy analysis, and SO2+ source rate estimates. Journal of Geophysical Research: Planets, 103(E9), 19887-19899. https://doi.org/10.1029/97JE03557
91) Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., ... & Bagenal, F. (2019). Juno‐UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124(7), 5184-5199. https://doi.org/10.1029/2018JA026431
92) Ip, W. H., & Goertz, C. K. (1983). An interpretation of the dawn–dusk asymmetry of UV emission from the Io plasma torus. Nature, 302(5905), 232-233. https://doi.org/10.1038/302232a0
93) Ip, W. H. (1996). The dust halo of Io. Geophysical research letters, 23(24), 3671-3674. https://doi.org/10.1029/96GL03481
94) Jessup, K. L., Spencer, J., & Yelle, R. (2007). Sulfur volcanism on Io. Icarus, 192(1), 24-40. https://doi.org/10.1016/j.icarus.2007.06.025
95) Jessup, K. L., & Spencer, J. R. (2012). Characterizing Io’s Pele, Tvashtar and Pillan plumes: lessons learned from Hubble. Icarus, 218(1), 378-405.
96) Jessup, K. L., & Spencer, J. R. (2015). Spatially resolved HST/STIS observations of Io’s dayside equatorial atmosphere. Icarus, 248, 165-189. https://doi.org/10.1016/j.icarus.2014.10.020
97) Johnson, T. V., Morfill, G., & Grün, E. (1980). Dust in Jupiter's magnetosphere: An Io source?. Geophysical Research Letters, 7(5), 305-308. https://doi.org/10.1029/GL007i005p00305
98) Johnson, T. V., Matson, D. L., Blaney, D. L., Veeder, G. J., & Davies, A. (1995). Stealth plumes on Io. Geophysical research letters, 22(23), 3293-3296. https://doi.org/10.1029/95GL03084
99) Keane, J. T., de Kleer, K., & Spencer, J. (2022). Perspective: the future exploration of Io. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 18(6), 399-404. https://doi.org/10.2138/gselements.18.6.399
100) Keszthelyi, L., McEwen, A. S., Phillips, C. B., Milazzo, M., Geissler, P., Turtle, E. P., ... & Denk, T. (2001). Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. Journal of Geophysical Research: Planets, 106(E12), 33025-33052. https://doi.org/10.1029/2000JE001383
101) Kimura, T., Badman, S. V., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., ... & Clarke, J. T. (2015). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42(6), 1662-1668. https://doi.org/10.1002/2015GL063272
102) Kimura, T., Hiraki, Y., Tao, C., Tsuchiya, F., Delamere, P. A., Yoshioka, K., ... & Fujimoto, M. (2018). Response of Jupiter's aurora to plasma mass loading rate monitored by the Hisaki satellite during volcanic eruptions at Io. Journal of Geophysical Research: Space Physics, 123(3), 1885-1899. https://doi.org/10.1051/swsc/2019005
103) Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. Jupiter: The planet, satellites and magnetosphere, 1, 513-536.
104) Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere. Journal of Geophysical Research: Space Physics, 110(A12). https://doi.org/10.1029/2005JA011176
105) Klaiber, L.M., “Three Dimensional DSMC Modelling Of The Dynamics Of Io’s Atmosphere. Building a simulation setup for parameter studies of the effects and the interaction of different processes in Io’s atmosphere”, PhD thesis, University of Bern, Feb. 2024.
106) Kliore, A., Cain, D. L., Fjeldbo, G., Seidel, B. L., & Rasool, S. I. (1974). Preliminary results on the atmospheres of Io and Jupiter from the Pioneer 10 S-band occultation experiment. Science, 183(4122), 323-324 .DOI: 10.1126/science.183.4122.323
107) Koga, R., Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoneda, M., Yoshioka, K., ... & Bagenal, F. (2018a). Spatial distribution of Io's neutral oxygen cloud observed by Hisaki. Journal of Geophysical Research: Space Physics, 123(5), 3764-3776. https://doi.org/10.1029/2018JA025328
108) Koga, R., Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoneda, M., Yoshioka, K., ... & Smith, H. T. (2018b). The time variation of atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED. Icarus, 299, 300-307. https://doi.org/10.1016/j.icarus.2017.07.024
109) Koga, R., Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoshioka, K., Yoshikawa, I., ... & Bagenal, F. (2019). Transient change of Io's neutral oxygen cloud and plasma torus observed by Hisaki. Journal of Geophysical Research: Space Physics, 124(12), 10318-10331. https://doi.org/10.1029/2019JA026877
110) Kosuge, S., Aoki, K., Inoue, T., Goldstein, D. B., & Varghese, P. L. (2012). Unsteady flows in Io’s atmosphere caused by condensation and sublimation during and after eclipse: Numerical study based on a model Boltzmann equation. Icarus, 221(2), 658-669. https://doi.org/10.1016/j.icarus.2012.08.036
111) Krüger, H., Krivov, A. V., Hamilton, D. P., & Grün, E. (1999). Detection of an impact-generated dust cloud around Ganymede. Nature, 399(6736), 558-560. https://doi.org/10.1038/21136
112) Krüger, H., Krivov, A. V., Sremčević, M., & Grün, E. (2003a). Impact-generated dust clouds surrounding the Galilean moons. Icarus, 164(1), 170-187. https://doi.org/10.1016/S0019-1035(03)00127-1
113) Krüger, H., Geissler, P., Horányi, M., Graps, A. L., Kempf, S., Srama, R., ... & Grün, E. (2003b). Jovian dust streams: A monitor of Io's volcanic plume activity. Geophysical research letters, 30(21). https://doi.org/10.1029/2003GL017827
114) Krüger, H., Horányi, M., Krivov, A. V., & Graps, A. L. (2004). Jovian dust: streams, clouds and rings. Jupiter: The Planet, Satellites and Magnetosphere, 219-240.
115) Kupo, I., Mekler, Y., Mekler, Y., & Eviatar, A. (1976). Detection of ionized sulfur in the Jovian magnetosphere. Astrophysical Journal, vol. 205, Apr. 1, 1976, pt. 2, p. L51-L53. Research supported by the Israel Commission for Basic Research., 205, L51-L53. DOI: 10.1086/182088
116) Küppers, M., and Schneider, N. M. (2000). Discovery of chlorine in the Io torus. Geophysical research letters, 27(4), 513-516. https://doi.org/10.1029/1999GL010718
117) Lagg, A., Krupp, N., Woch, J., Livi, S., Wilken, B., & Williams, D. J. (1998). Determination of the neutral number density in the Io torus from Galileo‐EPD measurements. Geophysical research letters, 25(21), 4039-4042. https://doi.org/10.1029/1998GL900070
118) Lellouch, E., Strobel, D. F., Belton, M. J. S., Summers, M. E., Paubert, G., & Moreno, R. (1996). Detection of sulfur monoxide in Io's atmosphere. The Astrophysical Journal, 459(2), L107. DOI: 10.1086/309956
119) Lellouch, E., Paubert, G., Moses, J. I., Schneider, N. M., & Strobel, D. F. (2003). Volcanically emitted sodium chloride as a source for Io's neutral clouds and plasma torus. Nature, 421(6918), 45-47. https://doi.org/10.1038/nature01292
120) Lellouch, E., McGrath, M. A., & Jessup, K. L. (2007). Io’s atmosphere. Io After Galileo, 231-264. https://doi.org/10.1007/978-3-540-48841-5
121) Lellouch, E., Ali-Dib, M., Jessup, K. L., Smette, A., Käufl, H. U., & Marchis, F. (2015). Detection and characterization of Io’s atmosphere from high-resolution 4-μm spectroscopy. Icarus, 253, 99-114. https://doi.org/10.1016/j.icarus.2015.02.018
122) Liu, X., & Schmidt, J. (2019). Dust in the Jupiter system outside the rings. Astrodynamics, 3, 17-29. https://doi.org/10.1007/s42064-018-0031-z 123) Lopes, R. M., Kamp, L. W., Smythe, W. D., Mouginis-Mark, P., Kargel, J., Radebaugh, J., ... & Douté, S. (2004). Lava lakes on Io: Observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys. Icarus, 169(1), 140-174. https://doi.org/10.1016/j.icarus.2003.11.013
124) Lopes-Gautier, R., McEwen, A. S., Smythe, W. B., Geissler, P. E., Kamp, L., Davies, A. G., ... & Teams, S. S. I. (1999). Active volcanism on Io: Global distribution and variations in activity. Icarus, 140(2), 243-264. https://doi.org/10.1006/icar.1999.6129
125) Lopes, R. M., de Kleer, K., & Keane, J. T. (Eds.). (2023). Io: A New View of Jupiter’s Moon (Vol. 468). Springer Nature.
126) LUVOIR Team. (2019). The LUVOIR mission concept study final report. arXiv preprint arXiv:1912.06219.
127) Lysak, R. L., Song, Y., Elliott, S., Kurth, W., Sulaiman, A. H., & Gershman, D. (2021). The Jovian ionospheric Alfvén resonator and auroral particle acceleration. Journal of Geophysical Research: Space Physics, 126(12), e2021JA029886. https://doi.org/10.1029/2021JA029886
128) Mauk, B. H., McEntire, R. W., Williams, D. J., Lagg, A., Roelof, E. C., Krimigis, S. M., ... & Wilken, B. (1998). Galileo‐measured depletion of near‐Io hot ring current plasmas since the Voyager epoch. Journal of Geophysical Research: Space Physics, 103(A3), 4715-4722. https://doi.org/10.1029/97JA02343
129) Mauk, B. H., Mitchell, D. G., Krimigis, S. M., Roelof, E. C., & Paranicas, C. P. (2003). Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature, 421(6926), 920-922. https://doi.org/10.1038/nature01431
130) Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., ... & Lagg, A. (2004). Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 109(A9). https://doi.org/10.1029/2003JA010270
131) Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., ... & Valek, P. (2017). Discrete and broadband electron acceleration in Jupiter’s powerful aurora. Nature, 549(7670), 66-69. https://doi.org/10.1038/nature23648
132) Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., ... & Rymer, A. M. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027699. https://doi.org/10.1029/2019JA027699
133) Mauk, B. H., Allegrini, F., Bagenal, F., Bolton, S. J., Clark, G., Connerney, J. E. P., ... & Sulaiman, A. H. (2022). Loss of energetic ions comprising the ring current populations of Jupiter's middle and inner magnetosphere. Journal of Geophysical Research: Space Physics, 127(5), e2022JA030293. https://doi.org/10.1038/4151003a
134) Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C. (2006). Io: Loki Patera as a magma sea. Journal of Geophysical Research: Planets, 111(E9). DOI: 10.1029/2006JE002703
135) McComas, D. J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R. W., Elliott, H., ... & Valek, P. (2007). Diverse plasma populations and structures in Jupiter's magnetotail. science, 318(5848), 217-220. https://doi.org/10.1126/science.1147393
136) McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., ... & White, D. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213, 547-643. https://doi.org/10.1007/s11214-013-9990-9
137) McDoniel, W. J., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. (2015). Three-dimensional simulation of gas and dust in Io’s Pele plume. Icarus, 257, 251-274. https://doi.org/10.1016/j.icarus.2015.03.019
138) McDoniel, W. J., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. (2017). The interaction of Io’s plumes and sublimation atmosphere. Icarus, 294, 81-97. https://doi.org/10.1016/j.icarus.2017.04.021
139) McDoniel, W. J., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. (2019). Simulation of Io’s plumes and Jupiter’s plasma torus. Physics of Fluids, 31(7). https://doi.org/10.1063/1.5097961
140) McEwen, A. S., & Soderblom, L. A. (1983). Two classes of volcanic plumes on Io. Icarus, 55(2), 191-217. https://doi.org/10.1016/0019-1035(83)90075-1
141) McEwen, A. S., Keszthelyi, L., Spencer, J. R., Schubert, G., Matson, D. L., Lopes-Gautier, R., ... & Belton, M. J. S. (1998). High-temperature silicate volcanism on Jupiter's moon Io. Science, 281(5373), 87-90. DOI: 10.1126/science.281.5373
142) McEwen, A.S., Haapala, A.E., Keszthelyi, L., and Mandt, K.E. (2023) Chapter 11: Outstanding questions and future exploration. In Io: A New View of Jupiter’s Moon, R.M.C. Lopes et al., Editors, Astrophysics and Space Science Library 468, https://doi.org/10.1007/978-3-031-25670-7_11
143) McGrath, M. A., & Johnson, R. E. (1989). Charge exchange cross sections for the Io plasma torus. Journal of Geophysical Research: Space Physics, 94(A3), 2677-2683. https://doi.org/10.1029/JA094iA03p02677
144) McGrath, M. A., Belton, M. J., Spencer, J. R., & Sartoretti, P. (2000). Spatially resolved spectroscopy of Io's Pele plume and SO2 atmosphere. Icarus, 146(2), 476-493. https://doi.org/10.1006/icar.1999.6412
145) Mendillo, M., Baumgardner, J., Flynn, B., & Hughes, W. J. (1990). The extended sodium nebula of Jupiter. Nature, 348(6299), 312-314. https://doi.org/10.1038/348312a0
146) Mendillo, M., Wilson, J., Spencer, J., & Stansberry, J. (2004). Io's volcanic control of Jupiter's extended neutral clouds. Icarus, 170(2), 430-442. https://doi.org/10.1016/j.icarus.2004.03.009
147) Milazzo, M. P., Keszthelyi, L. P., & McEwen, A. S. (2001). Observations and initial modeling of lava‐SO2 interactions at Prometheus, Io. Journal of Geophysical Research: Planets, 106(E12), 33121-33127. DOI:10.1029/2000JE001410
148) Moore, C., Walker, A., Goldstein, D., Varghese, P., Trafton, L., Parsons, N., & Levin, D. (2012). DSMC simulations of the plasma bombardment on Io's sublimated and sputtered atmosphere. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 560). https://doi.org/10.2514/6.2012-560
149) Moos, H. W., Skinner, T. E., Durrance, S. T., Feldman, P. D., Festou, M. C., & Bertaux, J. L. (1985). Long-term stability of the Io high-temperature plasma torus. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 294, July 1, 1985, p. 369-382., 294, 369-382. DOI: 10.1086/163304
150) Morabito, L. A., Synnott, S. P., Kupferman, P. N., & Collins, S. A. (1979). Discovery of currently active extraterrestrial volcanism. Science, 204(4396), 972-972. DOI: 10.1126/science.204.4396.972.a
151) Morfill, G. E., Grün, E., & Johnson, T. V. (1980). Dust in Jupiter's magnetosphere: Physical processes. Planetary and Space Science, 28(12), 1087-1100. https://doi.org/10.1016/0032-0633(80)90067-7
152) Morgenthaler, J. P., Rathbun, J. A., Schmidt, C. A., Baumgardner, J., & Schneider, N. M. (2019). Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening. The Astrophysical Journal Letters, 871(2), L23. DOI: 10.3847/2041-8213/aafdb7
153) Moses, J. I., & Nash, D. B. (1991). Phase transformations and the spectral reflectance of solid sulfur: Can metastable sulfur allotropes exist on Io?. Icarus, 89(2), 277-304. https://doi.org/10.1016/0019-1035(91)90179-W
154) Moses, J. I., Zolotov, M. Y., & Fegley Jr, B. (2002). Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus, 156(1), 107-135. https://doi.org/10.1006/icar.2001.6759
155) Moullet, A., Lellouch, E., Moreno, R., Gurwell, M. A., & Moore, C. (2008). First disk-resolved millimeter observations of Io's surface and SO2 atmosphere. Astronomy & Astrophysics, 482(1), 279-292. DOI: 10.1051/0004-6361:20078699
156) Moullet, A., Gurwell, M. A., Lellouch, E., & Moreno, R. (2010). Simultaneous mapping of SO2, SO, NaCl in Io’s atmosphere with the Submillimeter Array. Icarus, 208(1), 353-365. https://doi.org/10.1016/j.icarus.2010.02.009
157) Moullet, A., Lellouch, E., Moreno, R., Gurwell, M., Black, J. H., & Butler, B. (2013). Exploring Io's atmospheric composition with APEX: First measurement of 34SO2 and tentative detection of KCl. The Astrophysical Journal, 776(1), 32. DOI: 10.1088/0004-637X/776/1/32
158) Murakami, G., Yoshioka, K., Yamazaki, A., Tsuchiya, F., Kimura, T., Tao, C., ... & Fujimoto, M. (2016). Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus. Geophysical Research Letters, 43(24), 12-308.https://doi.org/10.1002/2016GL071675
159) Nerney, E. G., Bagenal, F., & Steffl, A. J. (2017). Io plasma torus ion composition: Voyager, Galileo, and Cassini. Journal of Geophysical Research: Space Physics, 122(1), 727-744. https://doi.org/10.1002/2016JA023306
160) Nerney, E. G., & Bagenal, F. (2020). Combining UV spectra and physical chemistry to constrain the hot electron fraction in the Io plasma torus. Journal of Geophysical Research: Space Physics, 125(4), e2019JA027458. https://doi.org/10.1029/2019JA027458
161) Nichols, J. D., & Cowley, S. W. H. (2005, March). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages. In Annales Geophysicae (Vol. 23, No. 3, pp. 799-808). Göttingen, Germany: Copernicus Publications. https://doi.org/10.5194/angeo-23-799-2005
162) Nichols, J. D. (2011). Magnetosphere–ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. Monthly Notices of the Royal Astronomical Society, 414(3), 2125-2138.
163) Pearl, J. C., & Sinton, W. M. (1982). Hot spots of Io. Satellites of Jupiter, 724-755.
164) Pearl, J., Hanel, R., Kunde, V., Maguire, W., Fox, K., Gupta, S., ... & Raulin, F. (1979). Identification of gaseous SO 2 and new upper limits for other gases on Io. Nature, 280(5725), 755-758. DOI: 10.1038/280755a0
165) Pontius Jr, D. H., Wolf, R. A., Hill, T. W., Spiro, R. W., Yang, Y. S., & Smyth, W. H. (1998). Velocity shear impoundment of the Io plasma torus. Journal of Geophysical Research: Planets, 103(E9), 19935-19946. https://doi.org/10.1029/98JE00538
166) Postberg, F., Srama, R., Kempf, S., Hillier, J. K., Green, S. F., & McBride, N. (2006). Cassini at Jupiter: Composition of Jovian dust streams and the implications for the volcanism on Io. In European Planetary Science Congress 2006 (p. 123).
167) Radebaugh, J., Keszthelyi, L. P., McEwen, A. S., Turtle, E. P., Jaeger, W., & Milazzo, M. (2001). Paterae on Io: A new type of volcanic caldera?. Journal of Geophysical Research: Planets, 106(E12), 33005-33020. https://doi.org/10.1029/2000JE001406
168) Radebaugh, J., McEwen, A. S., Milazzo, M. P., Keszthelyi, L. P., Davies, A. G., Turtle, E. P., & Dawson, D. D. (2004). Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images. Icarus, 169(1), 65-79. https://doi.org/10.1016/j.icarus.2003.10.019
169) Rathbun, J. A. and Spencer, J. R. (2006). Loki, Io: New ground-based observations and a model describing the change from periodic overturn. Geophysical Research Letters, V33(17). DOI: 10.1029/2006GL026844
170) Rathbun, J. A., Mura, A., Adriani, A., Tosi, F., & Lopes, R. M. C. (2020, March). Spatial and Temporal Variations in Io's Active Volcanoes: Insights from JUNO JIRAM Data. In 51st Annual Lunar and Planetary Science Conference (No. 2326, p. 2301).
171) Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2012). Magnetosphere‐ionosphere coupling at Jupiter: A parameter space study. Journal of Geophysical Research: Space Physics, 117(A1). https://doi.org/10.1029/2011JA016899
172) Redwing, E., de Pater, I., Luszcz-Cook, S., de Kleer, K., Moullet, A., & Rojo, P. M. (2022). NaCl and KCl in Io’s atmosphere. The Planetary Science Journal, 3(10), 238. DOI: 10.3847/PSJ/ac9784
173) Retherford, K. D., Moos, H. W., Strobel, D. F., Wolven, B. C., & Roesler, F. L. (2000). Io's equatorial spots: Morphology of neutral UV emissions. Journal of Geophysical Research: Space Physics, 105(A12), 27157-27165. https://doi.org/10.1029/2000JA002500
174) Retherford, K. D., Moos, H. W., & Strobel, D. F. (2003). Io's auroral limb glow: Hubble Space Telescope FUV observations. Journal of Geophysical Research: Space Physics, 108(A8). https://doi.org/10.1029/2002JA009710
175) Retherford, K. D., Roth, L., Becker, T. M., Feaga, L. M., Tsang, C. C. C., Jessup, K. L., & Grava, C. (2019). Io’s Atmosphere Silhouetted by Jupiter Lyα. The Astronomical Journal, 158(4), 154. DOI: 10.3847/1538-3881/ab3c4c
176) Roesler, F. L., Moos, H. W., Oliversen, R. J., Woodward Jr, R. C., Retherford, K. D., Scherb, F., ... & Strobel, D. F. (1999). Far-ultraviolet imaging spectroscopy of Io's atmosphere with HST/STIS. Science, 283(5400), 353-357. DOI: 10.1126/science.283.5400.353
177) Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., & Spencer, J. R. (2011). Simulation of Io’s auroral emission: Constraints on the atmosphere in eclipse. Icarus, 214(2), 495-509. https://doi.org/10.1016/j.icarus.2011.05.014
178) Roth, L., Saur, J., Retherford, K. D., Feldman, P. D., & Strobel, D. F. (2014). A phenomenological model of Io’s UV aurora based on HST/STIS observations. Icarus, 228, 386-406. https://doi.org/10.1016/j.icarus.2013.10.009
179) Roth, L., Saur, J., Retherford, K. D., Blöcker, A., Strobel, D. F., & Feldman, P. D. (2017). Constraints on Io's interior from auroral spot oscillations. Journal of Geophysical Research: Space Physics, 122(2), 1903-1927. https://doi.org/10.1002/2016JA023701
180) Roth, L., Boissier, J., Moullet, A., Sánchez-Monge, Á., de Kleer, K., Yoneda, M., ... & Thorwirth, S. (2020). An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere. Icarus, 350, 113925.
181) Russell, C. T., & Kivelson, M. G. (2000). Detection of SO in Io's exosphere. Science, 287(5460), 1998-1999. https://doi.org/10.1126/science.287.5460.1998
182) https://doi.org/10.1016/j.icarus.2020.113925
183) Russell, C. T., & Kivelson, M. G. (2001). Evidence for sulfur dioxide, sulfur monoxide, and hydrogen sulfide in the Io exosphere. Journal of Geophysical Research: Planets, 106(E12), 33267-33272. https://doi.org/10.1029/2000JE001342
184) Russell, C. T., Blanco-Cano, X., Wang, Y. L., & Kivelson, M. G. (2003). Ion cyclotron waves at Io: implications for the temporal variation of Io's atmosphere. Planetary and Space Science, 51(14-15), 937-944. https://doi.org/10.1016/j.pss.2003.05.005
185) Salveter, A., Saur, J., Clark, G., & Mauk, B. H. (2022). Jovian Auroral Electron Precipitation Budget—A Statistical Analysis of Diffuse, Mono‐Energetic, and Broadband Auroral Electron Distributions. Journal of Geophysical Research: Space Physics, 127(8), e2021JA030224. https://doi.org/10.1029/2021JA030224
186) Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three‐dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research: Space Physics, 104(A11), 25105-25126. https://doi.org/10.1029/1999JA900304
187) Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (2000). Io's ultraviolet aurora: Remote sensing of Io's interaction. Geophysical research letters, 27(18), 2893-2896. https://doi.org/10.1029/2000GL003824
188) Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (2002). Interpretation of Galileo's Io plasma and field observations: I0, I24, and I27 flybys and close polar passes. Journal of Geophysical Research: Space Physics, 107(A12), SMP-5. https://doi.org/10.1029/2001JA005067
189) Saur, J., Strobel, D. F., Neubauer, F. M., & Summers, M. E. (2003). The ion mass loading rate at Io. Icarus, 163(2), 456-468. https://doi.org/10.1016/S0019-1035(03)00085-X
190) Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson, M. G. (2004). Plasma interaction of Io with its plasma torus. Jupiter: The planet, satellites and magnetosphere, 1, 537-560.
191) Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy & Astrophysics, 552, A119. DOI: 10.1051/0004-6361/201118179
192) Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., ... & Kotsiaros, S. (2018). Wave‐particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123(11), 9560-9573. https://doi.org/10.1029/2018JA025948
193) Saur, J. (2021). Overview of Moon–magnetosphere interactions. Magnetospheres in the solar system, 575-593. https://doi.org/10.1002/9781119815624.ch36
194) Schmidt, C., Schneider, N., Leblanc, F., Gray, C., Morgenthaler, J., Turner, J., & Grava, C. (2018). A survey of visible S+ emission in Io's plasma torus during the Hisaki Epoch. Journal of Geophysical Research: Space Physics, 123(7), 5610-5624. https://doi.org/10.1029/2018JA025296
195) Schmidt, C. A. (2022). Doppler-Shifted Alkali D Absorption as Indirect Evidence for Exomoons. Frontiers in Astronomy and Space Sciences, 9, 801873.
196) Schmidt, C., Sharov, M., de Kleer, K., Schneider, N., de Pater, I., Phipps, P. H., ... & Brown, M. (2023). Io’s Optical Aurorae in Jupiter’s Shadow. The Planetary Science Journal, 4(2), 36. DOI: 10.3847/PSJ/ac85b0
197) Schneider, N. M., Shemansky, D. E., & Yu, K. C. (1989, June). Search for [Oi] 6300 Å emission from Io. In Bulletin of the American Astronomical Society, Vol. 21, p. 988 (Vol. 21, p. 988).
198) Schneider, N.M., Bagenal, F. (2007). Io’s neutral clouds, plasma torus, magnetospheric interaction. In: Io After Galileo . Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48841-5_11
199) Schneider, N. M., Trauger, J. T., Wilson, J. K., Brown, D. I., Evans, R. W., & Shemansky, D. E. (1991). Molecular origin of Io's fast sodium. Science, 253(5026), 1394-1397. DOI: 10.1126/science.253.5026.1394
200) Schreier, R.; Eviatar, Aharon; Vasyliūnas, Vytenis M. (1998). A two-dimensional model of plasma transport and chemistry in the Jovian magnetosphere. Journal of Geophysical Research, 103(E9), 19901-19914. DOI: 10.1029/98JE00697
201) Sieveka, E. M., & Johnson, R. E. (1984). Ejection of atoms and molecules from Io by plasma-ion impact. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 287, Dec. 1, 1984, p. 418-426., 287, 418-426. DOI: 10.1086/162701
202) Siscoe, G. L., & Summers, D. (1981). Centrifugally driven diffusion of Io-genic plasma. Journal of Geophysical Research: Space Physics, 86(A10), 8471-8479. https://doi.org/10.1029/JA086iA10p08471
203) Skinner, T. E., & Durrance, S. T. (1986). Neutral oxygen and sulfur densities in the Io torus. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 310, Nov. 15, 1986, p. 966-971., 310, 966-971. DOI: 10.1086/164747
204) Smith, B. A., Shoemaker, E. M., Kieffer, S. W., & Cook, A. F. (1979). The role of SO 2 in volcanism on Io. Nature, 280(5725), 738-743.
205) Smith, H. T., Mitchell, D. G., Johnson, R. E., Mauk, B. H., & Smith, J. E. (2019). Europa neutral torus confirmation and characterization based on observations and modeling. The Astrophysical Journal, 871(1), 69. https://doi.org/10.3847/1538-4357/aaed38
206) Smith, H. T., Koga, R., Tsuchiya, F., & Dols, V. J. (2022). Insight into Io enabled by characterization of its neutral oxygen torus. Journal of Geophysical Research: Space Physics, 127(8), e2022JA030581. https://doi.org/10.1029/2022JA030581
207) Smyth, W. H., & Combi, M. R. (1988a). A general model for Io's neutral gas clouds. I-Mathematical description. Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 66, April 1988, p. 397-411., 66, 397-411. DOI: 10.1086/191264
208) Smyth, W. H., & Combi, M. R. (1988b). A general model for Io's neutral gas clouds. II-Application to the sodium cloud. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 328, May 15, 1988, p. 888-918., 328, 888-918. DOI: 10.1086/166346
209) Smyth, W. H. (1992). Neutral cloud distribution in the Jovian system. Advances in Space Research, 12(8), 337-346. https://doi.org/10.1016/0273-1177(92)90408-P
210) Smyth, W. H., & Marconi, M. L. (2003, May). Circumplanetary neutrals from Io and Europa: Magnetospheric impact and ENA sources. In AAS/Division for Planetary Sciences Meeting Abstracts# 35 (Vol. 35, pp. 02-08).
211) Smyth, W. H., & Marconi, M. L. (2005). Nature of the Io-genic plasma source in Jupiter's magnetosphere: II. Near-Io distribution. Icarus, 176(1), 138-154. https://doi.org/10.1016/j.icarus.2005.01.010
212) Smyth, W. H., Peterson, C. A., & Marconi, M. L. (2011). A consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground‐based, and Galileo J0 epochs. Journal of Geophysical Research: Space Physics, 116(A7). https://doi.org/10.1029/2010JA016094
213) Southwood, D. J., & Kivelson, M. G. (1987). Magnetospheric interchange instability. Journal of Geophysical Research: Space Physics, 92(A1), 109-116. https://doi.org/10.1029/JA092iA01p00109
214) Spencer, J. R., & Schneider, N. M. (1996). Io on the eve of the Galileo mission. Annual Review of Earth and Planetary Sciences, 24(1), 125-190. DOI: 10.1146/annurev.earth.24.1.125
215) Spencer, J. R., Jessup, K. L., McGrath, M. A., Ballester, G. E., & Yelle, R. (2000). Discovery of gaseous S2 in Io's Pele plume. Science, 288(5469), 1208-1210. DOI: 10.1126/science.288.5469.1208
216) Spencer, J. R., Lellouch, E., Richter, M. J., López-Valverde, M. A., Jessup, K. L., Greathouse, T. K., & Flaud, J. M. (2005). Mid-infrared detection of large longitudinal asymmetries in Io's SO2 atmosphere. Icarus, 176(2), 283-304. https://doi.org/10.1016/j.icarus.2005.01.019
217) Spencer, J. R., Stern, S. A., Cheng, A. F., Weaver, H. A., Reuter, D. C., Retherford, K., ... & Dumas, C. (2007). Io volcanism seen by New Horizons: A major eruption of the Tvashtar volcano. Science, 318(5848), 240-243. DOI: 10.1126/science.1147621
218) Steffl, A. J., Stewart, A. I. F., & Bagenal, F. (2004a). Cassini UVIS observations of the Io plasma torus: I. Initial results. Icarus, 172(1), 78-90. https://doi.org/10.1016/j.icarus.2003.12.027
219) Steffl, A. J., Bagenal, F., & Stewart, A. I. F. (2004b). Cassini UVIS observations of the Io plasma torus: II. Radial variations. Icarus, 172(1), 91-103. https://doi.org/10.1016/j.icarus.2004.04.016
220) Strobel, D. F. (1989). Energetics, Luminosity. In Time-variable Phenomena in the Jovian System: Proceedings of the Workshop on Time-variable Phenomena in the Jovian System, Lowell Observatory, Flagstaf , Arizona, 25-27 August, 1987 (Vol. 494, p. 183). National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division.
221) Strobel, D. F., Zhu, X., & Summers, M. E. (1994). On the vertical thermal structure of Io's atmosphere. Icarus, 111(1), 18-30. https://doi.org/10.1006/icar.1994.1130
222) Strobel, D. F. (2002). Aeronomic systems on planets, moons, and comets. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 130, 7-22. DOI:10.1029/130GM02
223) Strom, R. G., Schneider, N. M., Terrile, R. J., Cook, A. F., & Hansen, C. (1981). Volcanic eruptions on Io. Journal of Geophysical Research: Space Physics, 86(A10), 8593-8620. https://doi.org/10.1029/JA086iA10p08593
224) Sullivan, J. D., & Bagenal, F. (1979). In situ identification of various ionic species in Jupiter's magnetosphere. Nature, 280(5725), 798-799. https://doi.org/10.1038/280798a0
225) Summers, M. E., & Strobel, D. F. (1996). Photochemistry and vertical transport in Io's atmosphere and ionosphere. Icarus, 120(2), 290-316. https://doi.org/10.1006/icar.1996.0051
226) Suzuki, F.; Yoshioka, K.; Hikida, R.; Murakami, G.; Tsuchiya, F.; Kimura, T.; Yoshikawa, I. (2018). Corotation of Bright Features in the Io Plasma Torus. Journal of Geophysical Research (Space Physics), 123(11), 9420-9429. DOI: 10.1029/2018JA025363
227) Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., ... & Wilson, R. J. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123(11), 3061-3077. https://doi.org/10.1029/2018JE005752
228) Tao, C., Fujiwara, H., & Kasaba, Y. (2010). Jovian magnetosphere–ionosphere current system characterized by diurnal variation of ionospheric conductance. Planetary and Space Science, 58(3), 351-364. https://doi.org/10.1016/j.pss.2009.10.005
229) Tao, C., Kimura, T., Tsuchiya, F., Muirakami, G., Yoshioka, K., Yamazaki, A., ... & Fujimoto, M. (2018). Variation of Jupiter's aurora observed by Hisaki/EXCEED: 3. Volcanic control of Jupiter's aurora. Geophysical Research Letters, 45(1), 71-79. https://doi.org/10.1002/2017GL075814
230) Tao, C., Kimura, T., Kronberg, E. A., Tsuchiya, F., Murakami, G., Yamazaki, A., ... & Okamoto, S. (2021). Variation of Jupiter's aurora observed by Hisaki/EXCEED: 4. Quasi‐periodic variation. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028575. https://doi.org/10.1029/2020JA028575
231) Tate, C. D., Rathbun, J. A., Hayes, A. G., Spencer, J. R., & Pettine, M. (2023). Discovery of Seven Volcanic Outbursts on Io from an Infrared Telescope Facility Observation Campaign, 2016–2022. The Planetary Science Journal, 4(10), 189.
232) Thomas, N. (1993). The variability of the Io plasma torus. Journal of Geophysical Research: Planets, 98(E10), 18737-18750. https://doi.org/10.1029/93JE01461
233) Thomas, N., Innes, D. E., & Lieu, R. (1996). Three-dimensional modelling of EUVE observations of the Io plasma torus. In Astrophysics in the Extreme Ultraviolet: Proceedings of Colloquium No. 152 of the International Astronomical Union, held in Berkeley, California, March 27–30, 1995 (pp. 457-464). Springer Netherlands. https://doi.org/10.1007/978-94-011-3988-5_73
234) Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. Jupiter. The planet, satellites and magnetosphere, 1, 561-591.
235) Tian, F., Stewart, A. I. F., Toon, O. B., Larsen, K. W., & Esposito, L. W. (2007). Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus, 188(1), 154-161.
236) Trafton, L., Parkinson, T., & Macy Jr, W. (1974). The spatial extent of sodium emission around Io. Astrophysical Journal, vol. 190, p. L85, 190, L85. DOI: 10.1086/181512 237) Trafton, L. (1975). Detection of a potassium cloud near Io. Nature, 258(5537), 690-692. https://doi.org/10.1038/258690a0
238) Trafton, L. (1981). A survey of Io's potassium cloud. Astrophysical Journal, Part 1, vol. 247, Aug. 1, 1981, p. 1125-1140., 247, 1125-1140. DOI: 10.1086/159123
239) Tsang, C. C., Spencer, J. R., Lellouch, E., López-Valverde, M. A., Richter, M. J., & Greathouse, T. K. (2012). Io’s atmosphere: Constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010. Icarus, 217(1), 277-296. https://doi.org/10.1016/j.icarus.2011.11.005
240) Tsang, C. C., Spencer, J. R., & Jessup, K. L. (2013). Synergistic observations of Io’s atmosphere in 2010 from HST–COS in the mid-ultraviolet and IRTF–TEXES in the mid-infrared. Icarus, 226(1), 604-616. https://doi.org/10.1016/j.icarus.2013.06.010
241) Tsang, C. C., Spencer, J. R., & Jessup, K. L. (2015). Non-detection of post-eclipse changes in Io’s Jupiter-facing atmosphere: Evidence for volcanic support?. Icarus, 248, 243-253. https://doi.org/10.1016/j.icarus.2014.10.033
242) Tsang, C. C., Spencer, J. R., Lellouch, E., Lopez‐Valverde, M. A., & Richter, M. J. (2016). The collapse of Io's primary atmosphere in Jupiter eclipse. Journal of Geophysical Research: Planets, 121(8), 1400-1410. https://doi.org/10.1002/2016JE005025
243) Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., ... & Sakanoi, T. (2018). Enhancement of the Jovian magnetospheric plasma circulation caused by the change in plasma supply from the satellite Io. Journal of Geophysical Research: Space Physics, 123(8), 6514-6532. https://doi.org/10.1029/2018JA025316
244) Tsuchiya, F., Arakawa, R., Misawa, H., Kagitani, M., Koga, R., Suzuki, F., et al. (2019). Azimuthal variation in the Io plasma torus observed by the Hisaki satellite from 2013 to 2016. Journal of Geophysical Research: Space Physics, 124, 3236–3254. https://doi.org/10.1029/2018JA026038.
245) Tubiana, C., Lucchetti, A., Denk, T., Hueso, R., Lara, L. M., Roatsch, T., ... & Palumbo, P. (2021). JANUS: the camera system onboard JUICE. Operational approach and scientific capabilities from operations case studies (No. EPSC2021-499). Copernicus Meetings. https://doi.org/10.5194/epsc2021-499
246) Vasyliunas, V. M. (1983). Plasma distribution and flow. Physics of the Jovian magnetosphere, 1, 395-453. https://doi.org/10.1017/CBO9780511564574.013
247) Vasyliūnas, V. M., & Song, P. (2005). Meaning of ionospheric Joule heating. Journal of Geophysical Research: Space Physics, 110(A2). https://doi.org/10.1029/2004JA010615
248) Veeder, G. J., Davies, A. G., Matson, D. L., Johnson, T. V., Williams, D. A., & Radebaugh, J. (2012). Io: Volcanic thermal sources and global heat flow. Icarus, 219(2), 701-722. https://doi.org/10.1016/j.icarus.2012.04.004
249) Veeder, G. J., Davies, A. G., Matson, D. L., Johnson, T. V., Williams, D. A., & Radebaugh, J. (2015). Io: Heat flow from small volcanic features. Icarus, 245, 379-410. https://doi.org/10.1016/j.icarus.2014.07.028
250) Villanueva, G. L., Hammel, H. B., Milam, S. N., Kofman, V., Faggi, S., Glein, C. R., ... & Denny, K. (2023). JWST molecular mapping and characterization of Enceladus’ water plume feeding its torus. Nature Astronomy, 1-7.
251) Walker, A. C., Gratiy, S. L., Goldstein, D. B., Moore, C. H., Varghese, P. L., Trafton, L. M., ... & Stewart, B. (2010). A comprehensive numerical simulation of Io’s sublimation-driven atmosphere. Icarus, 207(1), 409-432. https://doi.org/10.1016/j.icarus.2010.01.012
252) Walker, A. C., Moore, C. H., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. (2012). A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters. Icarus, 220(1), 225-253. https://doi.org/10.1016/j.icarus.2012.05.001
253) Warnecke, J., Kivelson, M. G., Khurana, K. K., Huddleston, D. E., & Russell, C. T. (1997). Ion cyclotron waves observed at Galileo's Io encounter: Implications for neutral cloud distribution and plasma composition. Geophysical research letters, 24(17), 2139-2142. https://doi.org/10.1029/97GL01129
254) Williams, D. A., & Howell, R. R. (2007). Active volcanism: E usive eruptions. Io After Galileo, 133. https://doi.org/10.1007/978-3-540-48841-5
255) Williams, D. A., Keszthelyi, L. P., Crown, D. A., Yff, J. A., Jaeger, W. L., Schenk, P. M., ... & Becker, T. L. (2011). Volcanism on Io: New insights from global geologic mapping. Icarus, 214(1), 91-112. https://doi.org/10.1016/j.icarus.2011.05.007
256) Wilson, J. K., & Schneider, N. M. (1999). Io's sodium directional feature: Evidence for ionospheric escape. Journal of Geophysical Research: Planets, 104(E7), 16567-16583. https://doi.org/10.1029/1999JE900017
257) Wilson, J. K., Mendillo, M., Baumgardner, J., Schneider, N. M., Trauger, J. T., & Flynn, B. (2002). The dual sources of Io's sodium clouds. Icarus, 157(2), 476-489. https://doi.org/10.1006/icar.2002.6821
258) Witteborn, F. C., Bregman, J. D., & Pollack, J. B. (1979). Io: An intense brightening near 5 micrometers. Science, 203(4381), 643-646. DOI: 10.1126/science.203.4381.643
259) Wolven, B. C., Moos, H. W., Retherford, K. D., Feldman, P. D., Strobel, D. F., Smyth, W. H., & Roesler, F. L. (2001). Emission profiles of neutral oxygen and sulfur in Io's exospheric corona. Journal of Geophysical Research: Space Physics, 106(A11), 26155-26182. https://doi.org/10.1029/2000JA002506
260) Wong, M. C., & Smyth, W. H. (2000). Model calculations for Io's atmosphere at eastern and western elongations. Icarus, 146(1), 60-74. https://doi.org/10.1006/icar.2000.6362
261) Yang, Y. S., Wolf, R. A., Spiro, R. W., Hill, T. W., & Dessler, A. J. (1994). Numerical simulation of torus‐driven plasma transport in the Jovian magnetosphere. Journal of Geophysical Research: Space Physics, 99(A5), 8755-8770. https://doi.org/10.1029/94JA00142
262) Yoneda, M., Kagitani, M., & Okano, S. (2009). Short-term variability of Jupiter’s extended sodium nebula. Icarus, 204(2), 589-596. https://doi.org/10.1016/j.icarus.2009.07.023
263) Yoneda, M., Tsuchiya, F., Misawa, H., Bonfond, B., Tao, C., Kagitani, M., & Okano, S. (2013). Io's volcanism controls Jupiter's radio emissions. Geophysical research letters, 40(4), 671-675. https://doi.org/10.1002/grl.50095
264) Yoneda, M., Kagitani, M., Tsuchiya, F., Sakanoi, T., & Okano, S. (2015). Brightening event seen in observations of Jupiter’s extended sodium nebula. Icarus, 261, 31-33. https://doi.org/10.1016/j.icarus.2015.07.037
265) Yoshikawa, I., Yoshioka, K., Murakami, G., Suzuki, F., Hikida, R., Yamazaki, A., ... & Fujimoto, M. (2016). Properties of hot electrons in the Jovian inner magnetosphere deduced from extended observations of the Io Plasma Torus. Geophysical Research Letters, 43(22), 11-552. https://doi.org/10.1002/2016GL070706
266) Yoshikawa, I., Suzuki, F., Hikida, R., Yoshioka, K., Murakami, G., Tsuchiya, F., ... & Fujimoto, M. (2017). Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015. Earth, Planets and Space, 69, 1-11. https://doi.org/10.1186/s40623-017-0700-9
267) Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kimura, T., Kagitani, M., ... & Fujimoto, M. (2014). Evidence for global electron transportation into the Jovian inner magnetosphere. Science, 345(6204), 1581-1584. https://doi.org/10.1126/science.1256259
268) Yoshioka, K., Tsuchiya, F., Kagitani, M., Kimura, T., Murakami, G., Fukuyama, D., ... & Fujimoto, M. (2018). The influence of Io's 2015 volcanic activity on Jupiter's magnetospheric dynamics. Geophysical Research Letters, 45(19), 10-193. https://doi.org/10.1029/2018GL079264
269) Zambon, F., Mura, A., Lopes, R. M. C., Rathbun, J., Tosi, F., Sordini, R., ... & Bolton, S. (2023). Io hot spot distribution detected by Juno/JIRAM. Geophysical Research Letters, 50(1), e2022GL100597.
270) Zhang, J., Goldstein, D. B., Varghese, P. L., Gimelshein, N. E., Gimelshein, S. F., & Levin, D. A. (2003). Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus, 163(1), 182-197. https://doi.org/10.1016/S0019-1035(03)00050-2
271) A Zhang, J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L.; Moore, C.; Miki, K. (2004). Numerical modeling of ionian volcanic plumes with entrained particulates. Icarus, 172(2), 479-502. DOI: 10.1016/j.icarus.2004.06.016
272) Zolotov, M. Y., & Fegley Jr, B. (1998). Volcanic production of sulfur monoxide (SO) on Io. Icarus, 132(2), 431-434. https://doi.org/10.1006/icar.1998.5906
This paper is available on arxiv under CC BY-NC-SA 4.0 DEED license.
Authors:
(1) L. Roth, KTH Royal Institute of Technology, Space and Plasma Physics, Stockholm, Sweden and a Corresponding author;
(2) A. Blöcker, KTH Royal Institute of Technology, Space and Plasma Physics, Stockholm, Sweden and Department of Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany;
(3) K. de Kleer, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA;
(4) D. Goldstein, Dept. Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX USA;
(5) E. Lellouch, Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Meudon, France;
(6) J. Saur, Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany;
(7) C. Schmidt, Center for Space Physics, Boston University, Boston, MA, USA;
(8) D.F. Strobel, Departments of Earth & Planetary Science and Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA;
(9) C. Tao, National Institute of Information and Communications Technology, Koganei, Japan;
(10) F. Tsuchiya, Graduate School of Science, Tohoku University, Sendai, Japan;
(11) V. Dols, Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Italy;
(12) H. Huybrighs, School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin 15, Ireland, Space and Planetary Science Center, Khalifa University, Abu Dhabi, UAE and Department of Mathematics, Khalifa University, Abu Dhabi, UAE;
(13) A. Mura, XX;
(14) J. R. Szalay, Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA;
(15) S. V. Badman, Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK;
(16) I. de Pater, Department of Astronomy and Department of Earth & Planetary Science, University of California, Berkeley, CA 94720, USA;
(17) A.-C. Dott, Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany;
(18) M. Kagitani, Graduate School of Science, Tohoku University, Sendai, Japan;
(19) L. Klaiber, Physics Institute, University of Bern, 3012 Bern, Switzerland;
(20) R. Koga, Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan;
(21) A. McEwen, Department of Astronomy and Department of Earth & Planetary Science, University of California, Berkeley, CA 94720, USA;
(22) Z. Milby, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA;
(23) K.D. Retherford, Southwest Research Institute, San Antonio, TX, USA and University of Texas at San Antonio, San Antonio, Texas, USA;
(24) S. Schlegel, Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany;
(25) N. Thomas, Physics Institute, University of Bern, 3012 Bern, Switzerland;
(26) W.L. Tseng, Department of Earth Sciences, National Taiwan Normal University, Taiwan;
(27) A. Vorburger, Physics Institute, University of Bern, 3012 Bern, Switzerland.