Artificial Intelligence (AI) is all the buzz with everyone looking for ways to leverage AI in some capacity within their organization. Whether you’re running a business focused on insurance, construction, or anything in between, the list of companies adding AI or Data Science teams to help their business succeed is growing every day.
Unfortunately for those tasked with making the decision to fund these emerging teams, the ROI for AI investments isn’t always immediately clear. Sure there are companies that have increased their bottom line by increasing their AI investment, however, their success isn’t the norm.
According to leading industry analysts, it takes 9 months to turn an idea for an AI application into a mature, stable production capability, and that’s assuming the idea isn’t one of the 47% of AI investments that never make it out of the lab for one reason or another. With so much lead time and risk associated with implementing your own AI solutions, committing to AI investment can rightly be seen as a risky proposition. As a decision-maker, you must decide whether funding AI investments is as risky as not investing in AI and having your competition develop an edge.
This isn’t a philosophical decision. It’s a decision many of the world’s largest corporations have thoroughly explored yielding dramatically different results for revenue. Take for example:
With this being such a meaty and thorny topic, we are creating a blog series devoted to the topic. We’ll provide a look at what it takes to implement an AI model within your enterprise and what questions you should be asking vendors and your staff. Prepared with this information, you can better determine whether or not it would be a good idea to invest your corporate resources into internal AI development.
Implementing AI in your business can come with a lot of upsides. However, it is a long-term investment with several challenges that have to be addressed for each AI investment you are considering funding to include:
…and each of these challenges requires a separate set of skills that are unlikely to be substantially understood by staff carrying out other activities in the pipeline.
Rest assured – it is not all doom and gloom and there is good news to be shared. By being proactive and tackling these challenges head-on, you can establish a well-functioning AI productization strategy that brings your organization’s AI capabilities under one umbrella. A unified strategy that allows capabilities to be leveraged, governed, audited, and updated from a central location for the good of your organization just as you expect of every other technology you implement. And since most companies are just starting to realize the need for having a cohesive strategy around AI productization by tackling it now, you’ll be ahead of your competition as they try to catch up.
Through the next eight blog posts, we’ll walk through the foundational elements you need to understand to overcome each of these eight challenges around your AI investments. We’ll walk you through a structured approach for organizing your efforts, the ModelOps pipeline.
Try not to stress over what you see in the graphic above. We’ll go over each step in the blog series. By the end of this series, you will be exposed to the big questions you need to ask and answers you need to get so that you can make informed decisions about the AI investments being proposed at your company.