3+7 high-potential ideas

Written by g.krasadakis | Published 2017/10/20
Tech Story Tags: innovation | technology | smart-handshake | startup | ideas

TLDRvia the TL;DR App

The ā€˜Smart Handshakeā€™ā€Šā€”ā€Što seamlessly identify the participants + 9 ideas for apps and start_ups from my personalĀ backlog_

1. The ā€˜Smart Handshake’

Did you ever have difficulties remembering names after a business or social handshake? If yes, check this seamless solution!

image: pixabay

Imagine this scenario: Two persons handshake in a business environment and, with no further interaction or activity, both persons receive a notification about each other, with name, photo, location, context and link to his/her LinkedIn or other socialĀ profile!

An app using the accelerometer, gyroscope and motion detection capabilities to identify the ā€˜universal’ pattern of a handshake

A business handshake between two persons who have installed the app in their smartphone or wearable, will trigger the following sequence ofĀ events:

  1. The app uses the accelerometer and related tech to identify the ā€˜universal’ movement of hands during a typical business handshake: based on patterns extracted from a vast volume of handshake eventsā€Šā€”ā€Šmovement data, the system is able to identify the gesture based on acceleration, speed, duration and the movement of theĀ hand.
  2. When the handshake is identified with confidence, it is logged in the data storeā€Šā€”ā€Šindependently for each of the users. The handshake event also contains the timestamp and location information.
  3. The system searches for other handshakes happened at the same time and location; the closest one in time and location refers to the other person of the handshake event.
  4. At this point both persons involved in the handshake, are identified. The app can lookup their social network profile linksā€Šā€”ā€Šfor instance, LinkedIn or Facebook. Each user receives information about the other’s person identity and social mediaĀ profile.
  5. As users continue to meet people, the app maintains the history of the new persons met (names, photos, social network profiles) andā€Šā€”ā€Šunder sufficient permissionsā€Šā€”ā€Šcan automatically invite or follow the other user on the default socialĀ network.

2. DIGITAL annotations on PHYSICALĀ books

You are reading a bookā€Šā€”ā€Ša physical one; it might be a novel, a technical or text book. You are at an important point/ paragraph where you need help or you need to comment on/ with a question or explanation.

image: pixabay

Imagine the following scenario:

  1. You use your smartphone to scan the paragraph or phrase of interestā€Šā€”ā€Šthe physicalĀ book
  2. The app performs OCR to extract the text from the paragraph/phrase/ page you justĀ scan
  3. The app triggers a full-text-search against a large database of booksā€Šā€”ā€Šcould be a service call such as Google’s Book API orĀ similar.
  4. The app receives the response from the APIā€Šā€”ā€Šincluding the identifier of the book and the positioningā€Šā€”ā€Ša reference to the paragraph andĀ page.
  5. The app retrieves user-generated-content and metadata about the specific paragraph/phrase/page of the identified book.
  6. The summarized user generated content is then presented to the user via the appā€Šā€”ā€Špossibly in an Augmented Reality mode and/ or with voiceĀ support.
  7. The user can use voice, via the app, to append his/her own private or public comments on the identified paragraph of theĀ book.

Full history is maintained for the user and the bookā€Šā€”ā€Šavailable also via classic search experience.

3. A self-organizing ā€˜Do Not Disturb’ mode

Ever been in theater, cinema or other noise-sensitive social situation where sounds from mobile notifications can spoil theĀ moment?

The common sense in such a situation is to set the mobile in silent or ā€˜Do not disturb’ mode. Although obvious, this is not the case for everybody: there are always those few who either by mistake or disrespectfully skipĀ this.

What if there was a way for the audience to seamlessly self-organize?

ā€˜The system’ could identify the situation as requiring ā€˜silent mode’ and notify the members of the audience to silent their mobiles (those who haven’t already); Or, in a more aggressive scenario, automatically set the phones in to ā€˜Do not Disturb’ mode

Mobile devices automatically enter silent mode when users join special social arrangements (a concert, a lecture etc.). This could happen seamlessly with no controlling system or particular rules: Assuming a number of people is at a particular placeā€Šā€”ā€Šwithin a specific radius and possibly around a particular known location; each time a mobile device is set to ā€˜silent mode’ by a user, an event is triggered which sends location and mode data into a centralized data store; this database allows the identification of ā€˜concurrent’ transitions to ā€˜silent mode’ within the sameĀ radius.

Multiple human-originated transitions to ā€˜silent mode’ which are time-aligned and within the same radius, indicate a self-adjusting behavior (people set their mobile phones to ā€˜silent mode’ at the same time and possibly for the sameĀ reason)

If this behavior is significant (as a percentage of the audienceā€Šā€”ā€Šmore than x% of the people identified in the same radius and time frame) there is a clear signal that the particular situation (people arrangement+point in time+ location) is requiring mobile devices in silent mode. Assuming that this behavior follows particular patternsā€Šā€”ā€Šlike specific days of the week, months, time-slots within the day, size of audience, time-frame length etc.ā€Šā€”ā€Šthe system can safely identify this location and time arrangement as ā€˜sensitive to noise’. Read moreĀ here

+7 ideas on music, news, messaging andĀ more

— follow the link or click on theĀ image:

7 High-potential startupĀ concepts

Images: pixabay


Written by g.krasadakis | Technology, Product and Innovation Advisor • Author of "The Innovation Mode"
Published by HackerNoon on 2017/10/20