Learn how to use the go-redis client to get started with Apache Kvrocks, a distributed key-value NoSQL database.
Apache Kvrocks is a distributed key-value NoSQL database that uses RocksDB as a storage engine and is compatible with the Redis protocol.
You can use Kvrocks as a drop-in replacement for Redis to store data on SSD, reducing storage costs and increasing capacity. For example, imagine taking one of the many existing Redis-based job queues and using them with Kvrocks and SSD storage.
Kvrocks supports most watch
command starting from v2.4.0.
You can launch Kvrocks using Docker:
docker run -it -p 6666:6666 apache/kvrocks
And start using it right away:
redis-cli -p 6666
127.0.0.1:6666> get foo
(nil)
127.0.0.1:6666> set foo bar
OK
127.0.0.1:6666> get foo
"bar"
You can also
Since Kvrocks uses Redis-compatible protocol, you can use your favorite Redis client to work with Kvrocks, for example, Go Redis client:
package main
import (
"context"
"github.com/redis/go-redis/v9"
)
func main() {
ctx := context.Background()
rdb := redis.NewClient(&redis.Options{
Addr: "localhost:6666",
})
err := rdb.Set(ctx, "key", "value", 0).Err()
if err != nil {
panic(err)
}
val, err := rdb.Get(ctx, "key").Result()
if err != nil {
panic(err)
}
fmt.Println("key", val)
}
Pipelines, pub/sub, and even Lua scripts are working as well:
var incrBy = redis.NewScript(`
local key = KEYS[1]
local change = ARGV[1]
local value = redis.call("GET", key)
if not value then
value = 0
end
value = value + change
redis.call("SET", key, value)
return value
`)
You can then run the script like this:
keys := []string{"my_counter"}
values := []interface{}{+1}
num, err := incrBy.Run(ctx, rdb, keys, values...).Int()
Monitoring Kvrocks performance is crucial to ensure optimal operation and identify any potential bottlenecks or issues.
OpenTelemetry provides instrumentation libraries and integrations for monitoring Kvrocks using its unified observability framework.
OpenTelemetry is an open-source observability framework designed to standardize and simplify the collection, analysis, and export of telemetry data OpenTelemetry allows developers to collect and export telemetry data in a vendor-agnostic way.
With OpenTelemetry, you can instrument your application once and then add or change vendors without changing the instrumentation, for example, here is a list
Uptrace is an
Uptrace stores telemetry data in the ClickHouse database. ClickHouse is an open-source column-oriented database management system that is designed to process large volumes of data in real time and to provide fast analytics and reporting capabilities.
You can use OpenTelemetry and Uptrace together to monitor Kvrocks performance using the go-redis instrumentation:
import "github.com/redis/go-redis/extra/redisotel/v9"
rdb := redis.NewClient(&redis.Options{
Addr: ":6666",
})
if err := redisotel.InstrumentTracing(rdb, redisotel.WithDBSystem("kvrocks")); err != nil {
panic(err)
}
if err := redisotel.InstrumentMetrics(rdb, redisotel.WithDBSystem("kvrocks")); err != nil {
panic(err)
}
Once the data reaches Uptrace, it will generate the following dashboard for you:
Because OpenTelemetry provides a vendor-agnostic approach, it allows you to choose an OpenTelemetry backend that best suits your requirements, for example, Jaeger or Zipkin.
You can also configure __OpenTelemetry Redis receiver__to monitor Kvrocks:
receivers:
redis/kvrocks:
endpoint: "kvrocks:6666"
collection_interval: 10s
The receiver works by parsing the output of INFO
command and produces a number of useful metrics:
See
You can also export the collected metrics to Prometheus using OpenTelemetry Prometheus bridge.
Using OpenTelemetry Metrics API, you can even create custom Kvrocks metrics. For example, the following function parses used_disk_percent
to create kvrocks.used_disk_percent
metric:
var re = regexp.MustCompile(`used_disk_percent:\s(\d+)%`)
func monitorKvrocks(ctx context.Context, rdb *redis.Client) error {
mp := global.MeterProvider()
meter := mp.Meter("github.com/uptrace/uptrace/example/kvrocks")
usedDiskPct, err := meter.AsyncFloat64().Gauge(
"kvrocks.used_disk_percent",
instrument.WithUnit("%"),
)
if err != nil {
return err
}
return meter.RegisterCallback(
[]instrument.Asynchronous{
usedDiskPct,
},
func(ctx context.Context) {
pct, err := getUsedDiskPercent(ctx, rdb)
if err != nil {
otel.Handle(err)
}
usedDiskPct.Observe(ctx, pct, semconv.DBSystemKey.String("kvrocks"))
},
)
}
func getUsedDiskPercent(ctx context.Context, rdb *redis.Client) (float64, error) {
info, err := rdb.Info(ctx, "keyspace").Result()
if err != nil {
return 0, err
}
m := re.FindStringSubmatch(info)
if m == nil {
return 0, errors.New("can't find used_disk_percent metric")
}
n, err := strconv.ParseInt(m[1], 10, 64)
if err != nil {
return 0, err
}
return float64(n) / 100, nil
}
The metric looks like this in Uptrace:
See