Zoonomia, Vol. I Or, the Laws of Organic Life by Erasmus Darwin is part of HackerNoon’s Book Blog Post series. You can jump to any chapter in this book here: [LINK TO TABLE OF LINK]. Section XXXVII: Of Digestion, Secretion, Nutrition
I. The larger crystals of saline bodies may be conceived to arise from the combination of smaller crystals of the same form, owing to the greater attractions of their sides than of their angles. Thus if four cubes were floating in a fluid, whose friction or resistance is nothing, it is certain the sides of these cubes would attract each other stronger than their angles; and hence that these four smaller cubes would so arrange themselves as to produce one larger one.
There are other means of chemical accretion, such as the depositions of dissolved calcareous or siliceous particles, as are seen in the formation of the stalactites of limestone in Derbyshire, or of calcedone in Cornwall. Other means of adhesion are produced by heat and pressure, as in the welding of iron-bars; and other means by simple pressure, as in forcing two pieces of caoutchou, or elastic gum, to adhere; and lastly, by the agglutination of a third substance penetrating the pores of the other two, as in the agglutination of wood by means of animal gluten. Though the ultimate particles of animal bodies are held together during life, as well as after death, by their specific attraction of cohesion, like all other matter; yet it does not appear, that their original organization was produced by chemical laws, and their production and increase must therefore only be looked for from the laws of animation.
II. When the pain of hunger requires relief, certain parts of the material world, which surround us, when applied to our palates, excite into action the muscles of deglutition; and the material is swallowed into the stomach. Here the new aliment becomes mixed with certain animal fluids, and undergoes a chemical process, termed digestion; which however chemistry has not yet learnt to imitate out of the bodies of living animals or vegetables. This process seems very similar to the saccharine process in the lobes of farinaceous seeds, as of barley, when it begins to germinate; except that, along with the sugar, oil and mucilage are also produced; which form the chyle of animals, which is very similar to their milk.
The reason, I imagine, why this chyle-making, or saccharine process, has not yet been imitated by chemical operations, is owing to the materials being in such a situation in respect to warmth, moisture, and motion; that they will immediately change into the vinous or acetous fermentation; except the new sugar be absorbed by the numerous lacteal or lymphatic vessels, as soon as it is produced; which is not easy to imitate in the laboratory.
These lacteal vessels have mouths, which are irritated into action by the stimulus of the fluid, which surrounds them; and by animal selection, or appetency, they absorb such part of the fluid as is agreeable to their palate; those parts, for instance, which are already converted into chyle, before they have time to undergo another change by a vinous or acetous fermentation. This animal absorption of fluid is almost visible to the naked eye in the action of the puncta lacrymalia; which imbibe the tears from the eye, and discharge them again into the nostrils.
III. The arteries constitute another reservoir of a changeful fluid; from which, after its recent oxygenation in the lungs, a further animal selection of various fluids is absorbed by the numerous glands; these select their respective fluids from the blood, which is perpetually undergoing a chemical change; but the selection by these glands, like that of the lacteals, which open their mouths into the digesting aliment in the stomach, is from animal appetency, not from chemical affinity; secretion cannot therefore be imitated in the laboratory, as it consists in a selection of part of a fluid during the chemical change of that fluid.
The mouths of the lacteals, and lymphatics, and the ultimate terminations of the glands, are finer than can easily be conceived; yet it is probable, that the pores, or interstices of the parts, or coats, which constitute these ultimate vessels, may still have greater tenuity; and that these pores from the above analogy must posses a similar power of irritability, and absorb by their living energy the particles of fluid adapted to their purposes, whether to replace the parts abraded or dissolved, or to elongate and enlarge themselves. Not only every kind of gland is thus endued with its peculiar appetency, and selects the material agreeable to its taste from the blood, but every individual pore acquires by animal selection the material, which it wants; and thus nutrition seems to be performed in a manner so similar to secretion; that they only differ in the one retaining, and the other parting again with the particles, which they have selected from the blood.
This way of accounting for nutrition from stimulus, and the consequent animal selection of particles, is much more analogous to other phenomena of the animal microcosm, than by having recourse to the microscopic animalcula, or organic particles of Buffon, and Needham; which being already compounded must themselves require nutritive particles to continue their own existence. And must be liable to undergo a change by our digestive or secretory organs; otherwise mankind would soon resemble by their theory the animals, which they feed upon. He, who is nourished by beef or venison, would in time become horned; and he, who feeds on pork or bacon, would gain a nose proper for rooting into the earth, as well as for the perception of odours.
The whole animal system may be considered as consisting of the extremities of the nerves, or of having been produced from them; if we except perhaps the medullary part of the brain residing in the head and spine, and in the trunks of the nerves. These extremities of the nerves are either of those of locomotion, which are termed muscular fibres; or of those of sensation, which constitute the immediate organs of sense, and which have also their peculiar motions. Now as the fibres, which constitute the bones and membranes, possessed originally sensation and motion; and are liable again to possess them, when they become inflamed; it follows, that those were, when first formed, appendages to the nerves of sensation or locomotion, or were formed from them. And that hence all these solid parts of the body, as they have originally consisted of extremities of nerves, require an apposition of nutritive particles of a similar kind, contrary to the opinion of Buffon and Needham above recited.
Lastly, as all these filaments have possessed, or do possess, the power of contraction, and of consequent inertion or elongation; it seems probable, that the nutritive particles are applied during their times of elongation; when their original constituent particles are removed to a greater distance from each other. For each muscular or sensual fibre may be considered as a row or string of beads; which approach, when in contraction, and recede during its rest or elongation; and our daily experience shews us, that great action emaciates the system, and that it is repaired during rest.
Something like this is seen out of the body; for if a hair, or a single untwisted fibre of flax or silk, be soaked in water; it becomes longer and thicker by the water, which is absorbed into its pores. Now if a hair could be supposed to be thus immersed in a solution of particles similar to those, which compose it; one may imagine, that it might be thus increased in weight and magnitude; as the particles of oak-bark increase the substance of the hides of beasts in the process of making leather. I mention these not as philosophic analogies, but as similes to facilitate our ideas, how an accretion of parts may be effected by animal appetences, or selections, in a manner somewhat similar to mechanical or chemical attractions.
If those new particles of matter, previously prepared by digestion and sanguification, only supply the places of those, which have been abraded by the actions of the system, it is properly termed nutrition. If they are applied to the extremities of the nervous fibrils, or in such quantity as to increase the length or crassitude of them, the body becomes at the same time enlarged, and its growth is increased, as well as its deficiences repaired.
In this last case something more than a simple apposition or selection of particles seems to be necessary; as many parts of the system during its growth are caused to recede from those, with which they were before in contact; as the ends of the bones, or cartilages, recede from each other, as their growth advances: this process resembles inflammation, as appears in ophthalmy, or in the production of new flesh in ulcers, where old vessels are enlarged, and new ones produced; and like that is attended with sensation. In this situation the vessels become distended with blood, and acquire greater sensibility, and may thus be compared to the erection of the penis, or of the nipples of the breasts of women; while new particles become added at the same time; as in the process of nutrition above described.
When only the natural growth of the various parts of the body are produced, a pleasurable sensation attends it, as in youth, and perhaps in those, who are in the progress of becoming fat. When an unnatural growth is the consequence, as in inflammatory diseases, a painful sensation attends the enlargement of the system.
IV. This apposition of new parts, as the old ones disappear, selected from the aliment we take, first enlarges and strengthens our bodies for twenty years, for another twenty years it keeps us in health and vigour, and adds strength and solidity to the system; and then gradually ceases to nourish us properly, and for another twenty years we gradually sink into decay, and finally cease to act, and to exist.
On considering this subject one should have imagined at first view, that it might have been easier for nature to have supported her progeny for ever in health and life, than to have perpetually reproduced them by the wonderful and mysterious process of generation. But it seems our bodies by long habit cease to obey the stimulus of the aliment, which should support us. After we have acquired our height and solidity we make no more new parts, and the system obeys the irritations, sensations, volitions; and associations, with, less and less energy, till the whole sinks into inaction.
Three causes may conspire to render our nerves less excitable, which have been already mentioned, 1. If a stimulus be greater than natural, it produces too great an exertion of the stimulated organ, and in consequence exhausts the spirit of animation; and the moving organ ceases to act, even though the stimulus be continued. And though rest will recruit this exhaustion, yet some degree of permanent injury remains, as is evident after exposing the eyes long to too strong a light. 2. If excitations weaker than natural be applied, so as not to excite the organ into action, (as when small doses of aloe or rhubarb are exhibited,) they may be gradually increased, without exciting the organ into action; which will thus acquire a habit of disobedience to the stimulus; thus by increasing the dose by degrees, great quantities of opium or wine may be taken without intoxication. See Sect. XII. 3. 1.
3. Another mode, by which life is gradually undermined, is when irritative motions continue to be produced in consequence of stimulus, but are not succeeded by sensation; hence the stimulus of contagious matter is not capable of producing fever a second time, because it is not succeeded by sensation. See Sect. XII. 3. 6. And hence, owing to the want of the general pleasurable sensation, which ought to attend digestion and glandular secretion, an irksomeness of life ensues; and, where this is in greater excess, the melancholy of old age occurs, with torpor or debility.
From hence I conclude, that it is probable that the fibrillæ, or moving filaments at the extremities of the nerves of sense, and the fibres which constitute the muscles (which are perhaps the only parts of the system that are endued with contractile life) are not changed, as we advance in years, like the other parts of the body; but only enlarged or elongated with our growth; and in consequence they become less and less excitable into action. Whence, instead of gradually changing the old animal, the generation of a totally new one becomes necessary with undiminished excitability; which many years will continue to acquire new parts, or new solidity, and then losing its excitability in time, perish like its parent.
V. From this idea the art of preserving long health and life may be deduced; which must consist in using no greater stimulus, whether of the quantity or kind of our food and drink, or of external circumstances, such as heat, and exercise, and wakefulness, than is sufficient to preserve us in vigour; and gradually, as we grow old to increase the stimulus of our aliment, as the irritability of our system increases.
The debilitating effects ascribed by the poet MARTIAL to the excessive use of warm bathing in Italy, may with equal propriety be applied to the warm rooms of England; which, with the general excessive stimulus of spirituous or fermented liquors, and in some instances of immoderate venery, contribute to shorten our lives.
Balnea, vina, venus, corrumpunt corpora nostra,
At faciunt vitam balnea, vina, venus!
Wine, women, warmth, against our lives combine;
But what is life without warmth, women, wine!
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books. This book is part of the public domain.
Darwin, Erasmus, 2005. Zoonomia, Vol. Or, the Laws of Organic Life. Urbana, Illinois: Project Gutenberg. Retrieved May 2022 from https://www.gutenberg.org/files/15707/15707-h/15707-h.htm#sect_XXXVII
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.