2 Dark matter through ALP portal and 2.1 Introduction
2.3 Existing constraints on ALP parameter space
3 A two component dark matter model in a generic 𝑈(1)𝑋 extension of SM and 3.1 Introduction
3.3 Theoretical and experimental constraints
3.4 Phenomenology of dark matter
3.5 Relic density dependence on 𝑈(1)𝑋 charge 𝑥𝐻
4 A pseudo-scalar dark matter case in 𝑈(1)𝑋 extension of SM and 4.1 Introduction
4.3 Theoretical and experimental constraints
Appendices
The kinetic term for the fermions (leptons and quarks) is given by
The Yukawa interactions for the leptons and quarks are given by
Our universe at a large scale can be described well if we assume isotropy and homogeneity of space. The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric hold these assumptions, which is given by,
here p and 𝜌 are the pressure and energy density of the fluid respectively whereas 𝑢𝜇 is the velocity vector in comoving coordinates. One can now derive the Friedmann equations as
Using the above two equations, one can derive the density evolution equation,
where H is the Hubble parameter.
here subscript c stands for charge conjugation. Now one can write the above expression as follows
One can diagonalize the above mass matrix and can get mass eigenstates corresponding to
This naturally explains the smallness of neutrino masses.
The relevant Feynman diagram for relic density analysis of scalar and fermion DM are shown in Figs. D.1 and D.2, respectively.
[1] Y. Sofue, Y. Tutui, M. Honma, A. Tomita, T. Takamiya, J. Koda, and Y. Takeda, Central rotation curves of spiral galaxies, The Astrophysical Journal 523 no. 1, (Sep, 1999) 136–146. https://doi.org/10.1086/307731.
[2] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, The Astrophysical Journal 648 no. 2, (Aug., 2006) L109–L113. http://dx.doi.org/10.1086/508162.
[3] K. Garrett and G. Duda, Dark matter: A primer, Advances in Astronomy 2011 (2011) 1–22. https://doi.org/10.1155%2F2011%2F968283.
[4] J. Cooley, Overview of non-liquid noble direct detection dark matter experiments, Physics of the Dark Universe 4 (Sep, 2014) 92–97. https://doi.org/10.1016%2Fj.dark.2014.10.005.
[5] Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and fermi-LAT observations of dwarf satellite galaxies, Feb, 2016. https://doi.org/10.1088%2F1475-7516%2F2016%2F02%2F039.
[6] G. Elor, N. L. Rodd, T. R. Slatyer, and W. Xue, Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter, JCAP 06 (2016) 024, arXiv:1511.08787 [hep-ph].
[7] HESS Collaboration, H. Abdallah et al., Search for 𝛾-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S., Phys. Rev. Lett. 120 no. 20, (2018) 201101, arXiv:1805.05741 [astro-ph.HE].
[8] Fermi-LAT Collaboration, M. Ackermann et al., Search for Gamma-ray Spectral Lines with the Fermi Large Area Telescope and Dark Matter Implications, Phys. Rev. D 88 (2013) 082002, arXiv:1305.5597 [astro-ph.HE].
[9] ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
[10] ATLAS Collaboration, G. Aad et al., Search for high-mass dilepton resonances using 139 fb−1 of 𝑝 𝑝 collision data collected at √ 𝑠 =13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].
[11] CMS Collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−1 of data at √ 𝑠 = 13 TeV, 2019.
[12] ATLAS Collaboration, Search for New Phenomena in Dijet Events using 139 fb−1 of 𝑝 𝑝 collisions at √ 𝑠 = 13TeV collected with the ATLAS Detector, 3, 2019.
[13] CMS Collaboration, A. M. Sirunyan et al., Search for narrow and broad dijet resonances in proton-proton collisions at √ 𝑠 = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130, arXiv:1806.00843 [hep-ex].
[14] A. Das, P. S. B. Dev, Y. Hosotani, and S. Mandal, Probing the minimal 𝑈(1)𝑋 model at future electron-positron colliders via the fermion pair-production channel, arXiv:2104.10902 [hep-ph]
[15] J. de Blas et al., The CLIC Potential for New Physics, arXiv:1812.02093 [hep-ph].
[16] LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61–75, arXiv:hep-ex/0306033.
[17] Y. Wang, M. Berggren, and J. List, ILD Benchmark: Search for Extra Scalars Produced in Association with a 𝑍 boson at √ 𝑠 = 500 GeV, arXiv:2005.06265 [hep-ex].
[18] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
[19] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 no. 2, (2014) 023524, arXiv:1307.5458 [hep-ph].
[20] PandaX Collaboration, H. Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 no. 3, (2019) 31011, arXiv:1806.02229 [physics.ins-det].
[21] LUX-ZEPLIN Collaboration, D. S. Akerib et al., Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D 101 no. 5, (2020) 052002, arXiv:1802.06039 [astro-ph.IM].
[22] LZ Collaboration, J. Aalbers et al., First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131 no. 4, (2023) 041002, arXiv:2207.03764 [hep-ex].
[23] XENON Collaboration, E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031, arXiv:2007.08796 [physics.ins-det].
[24] E. Aprile and K. e. Abe, First dark matter search with nuclear recoils from the xenonnt experiment, Physical Review Letters 131 no. 4, (July, 2023) . http://dx.doi.org/10.1103/PhysRevLett.131.041003.
[25] GADMC Collaboration, C. Galbiati et al., Future Dark Matter Searches with Low-Radioactivity Argon, 2018. https://indico.cern.ch/event/765096/contributions/3295671/ attachments/1785196/2906164/DarkSide-Argo_ESPP_Dec_17_2017.pdf.
[26] DARWIN Collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017, arXiv:1606.07001 [astro-ph.IM].
[27] J. Billard et al., Direct Detection of Dark Matter – APPEC Committee Report, arXiv:2104.07634 [hep-ex].
[28] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, New limits on the dark matter lifetime from dwarf spheroidal galaxies using fermi-LAT, Physical Review D 93 no. 10, (May, 2016) . https://doi.org/10.1103%2Fphysrevd.93.103009.
[29] C. A. J. O’Hare, New definition of the neutrino floor for direct dark matter searches, Physical Review Letters 127 no. 25, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevlett.127.251802.
[30] A. Das, S. Gola, S. Mandal, and N. Sinha, Two-component scalar and fermionic dark matter candidates in a generic U(1)X model, Phys. Lett. B 829 (2022) 137117, arXiv:2202.01443 [hep-ph].
[31] S. Profumo, K. Sigurdson, and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016, arXiv:0907.4374 [hep-ph].
[32] M. Lisanti, Lectures on Dark Matter Physics, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 399–446. 2017. arXiv:1603.03797 [hep-ph].
[33] E. W. Kolb and M. S. Turner, The Early Universe, 1990.
[34] M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rept. 340 (2001) 291–472, arXiv:astro-ph/9912508.
[35] D. Clowe, A. Gonzalez, and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273.
[36] D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462–1465, arXiv:1503.07675 [astro-ph.CO].
[37] WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19, arXiv:1212.5226 [astro-ph.CO].
[38] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
[39] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
[40] W. T. Kelvin, The index, p. [695]-703, was issued separately with cover-title: Index to Lord Kelvin’s volume of Baltimore lectures. Cambridge, Printed at the University press, 1905, Cambridge, Printed at the University press (1904) .
[41] J. H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, bain 6 (Aug., 1932) 249.
[42] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, apj 86 (Oct., 1937) 217.
[43] V. C. Rubin, Dark matter in spiral galaxies, Scientific American 248 no. 6, (1983) 96–109. http://www.jstor.org/stable/24968923.
[44] D. Walsh, R. F. Carswell, and R. J. Weymann, 0957+561 A, B: twin quasistellar objects or gravitational lens?, nat 279 (May, 1979) 381–384.
[45] A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna Temperature at 4080 Mc/s., apj 142 (July, 1965) 419–421.
[46] G. Bertone and D. Hooper, History of dark matter, Oct, 2018. https://doi.org/10.1103%2Frevmodphys.90.045002.
[47] C. A. Argüelles, K. J. Kelly, and V. M. Muñoz, Millicharged particles from the heavens: single- and multiple-scattering signatures, Journal of High Energy Physics 2021 no. 11, (Nov., 2021) . http://dx.doi.org/10.1007/JHEP11(2021)099.
[48] S. Profumo, L. Giani, and O. F. Piattella, An Introduction to Particle Dark Matter, Universe 5 no. 10, (2019) 213, arXiv:1910.05610 [hep-ph].
[49] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
[50] G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger, Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, Phys. Rev. Lett. 9 (Jul, 1962) 36–44. https://link.aps.org/doi/10.1103/PhysRevLett.9.36.
[51] T. Kajita, Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 no. 3, (2016) 030501.
[52] A. de Gouvêa, Neutrino mass models, Annual Review of Nuclear and Particle Science 66 no. 1, (2016) 197–217, https://doi.org/10.1146/annurev-nucl-102115-044600. https://doi.org/10.1146/annurev-nucl-102115-044600.
[53] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
[54] M. Lattanzi and M. Gerbino, Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Front. in Phys. 5 (2018) 70, arXiv:1712.07109 [astro-ph.CO].
[55] V. De Luca, A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, Colored dark matter, Physical Review D 97 no. 11, (June, 2018) . http://dx.doi.org/10.1103/PhysRevD.97.115024.
[56] S.-M. Choi, J. Kim, P. Ko, and J. Li, A multi-component SIMP model with 𝑈(1)𝑋 → 𝑍2 × 𝑍3, JHEP 09 (2021) 028, arXiv:2103.05956 [hep-ph].
[57] S.-Y. Ho, P. Ko, and C.-T. Lu, Scalar and Fermion Two-component SIMP Dark Matter with an Accidental Z4 Symmetry, arXiv:2201.06856 [hep-ph].
[58] G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186, arXiv:1801.03509 [hep-ph].
[59] T. Bringmann, P. F. Depta, M. Hufnagel, J. T. Ruderman, and K. Schmidt-Hoberg, Dark matter from exponential growth, Physical Review Letters 127 no. 19, (Nov., 2021) . http://dx.doi.org/10.1103/PhysRevLett.127.191802.
[60] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, The landscape of qcd axion models, Physics Reports 870 (July, 2020) 1–117. http://dx.doi.org/10.1016/j.physrep.2020.06.002.
[61] E. G. M. Ferreira, Ultra-light dark matter, The Astronomy and Astrophysics Review 29 no. 1, (Sept., 2021) . http://dx.doi.org/10.1007/s00159-021-00135-6.
[62] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, Sterile neutrino dark matter, Progress in Particle and Nuclear Physics 104 (Jan., 2019) 1–45. http://dx.doi.org/10.1016/j.ppnp.2018.07.004.
[63] D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Physics Reports 453 no. 2–4, (Dec., 2007) 29–115. http://dx.doi.org/10.1016/j.physrep.2007.09.003.
[64] C. e. Alcock, Eros and macho combined limits on planetary-mass dark matter in the galactic halo, The Astrophysical Journal 499 no. 1, (May, 1998) L9–L12. http://dx.doi.org/10.1086/311355.
[65] LUX Collaboration, D. S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].
[66] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
[67] IceCube Collaboration Collaboration, A. et al., Limits on a muon flux from neutralino annihilations in the sun with the icecube 22-string detector, Phys. Rev. Lett. 102 (May, 2009) 201302. https://link.aps.org/doi/10.1103/PhysRevLett.102.201302.
[68] M. A. et al., Antares: The first undersea neutrino telescope, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 656 no. 1, (2011) 11–38. https: //www.sciencedirect.com/science/article/pii/S0168900211013994.
[69] PAMELA Collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607–609, arXiv:0810.4995 [astro-ph].
[70] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The Particle Physics Approach, vol. 959 of Lecture Notes in Physics. Springer, 2019. arXiv:1705.01987 [hep-ph].
[71] P. Minkowski, 𝜇 → 𝑒𝛾 at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421–428.
[72] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22 (1980) 2227.
[73] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912.
[74] J. Schechter and J. W. F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774.
[75] I. Dorsner and P. Fileviez Perez, Upper Bound on the Mass of the Type III Seesaw Triplet in an SU(5) Model, JHEP 06 (2007) 029, arXiv:hep-ph/0612216.
[76] B. Bajc, M. Nemevsek, and G. Senjanovic, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011, arXiv:hep-ph/0703080.
[77] A. de Gouvea, J. Jenkins, and N. Vasudevan, Neutrino Phenomenology of Very Low-Energy Seesaws, Phys. Rev. D 75 (2007) 013003, arXiv:hep-ph/0608147.
[78] A. de Gouvea, GeV seesaw, accidentally small neutrino masses, and Higgs decays to neutrinos, arXiv:0706.1732 [hep-ph].
[79] A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651–678, arXiv:1401.1507 [hep-ph].
[80] D. Borah and A. Dasgupta, Common origin of neutrino mass, dark matter and dirac leptogenesis, Journal of Cosmology and Astroparticle Physics 2016 no. 12, (Dec, 2016) 034–034. https://doi.org/10.1088/1475-7516/2016/12/034.
[81] P. Das and M. K. Das, Phenomenology of 𝑘𝑒𝑉 sterile neutrino in minimal extended seesaw, Int. J. Mod. Phys. A 35 no. 22, (2020) 2050125, arXiv:1908.08417 [hep-ph].
[82] A. Merle, keV sterile neutrino Dark Matter, PoS NOW2016 (2017) 082, arXiv:1702.08430 [hep-ph].
[83] M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025, arXiv:1602.04816 [hep-ph].
[84] A. Abada, G. Arcadi, and M. Lucente, Dark Matter in the minimal Inverse Seesaw mechanism, JCAP 10 (2014) 001, arXiv:1406.6556 [hep-ph].
[85] R. D. Peccei, QCD, strong CP and axions, J. Korean Phys. Soc. 29 (1996) S199–S208, arXiv:hep-ph/9606475.
[86] R. D. Peccei, The Strong CP problem and axions, Lect. Notes Phys. 741 (2008) 3–17, arXiv:hep-ph/0607268.
[87] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602, arXiv:0807.3125 [hep-ph]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].
[88] A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004, arXiv:1812.02669 [hep-ph].
[89] M. P. Lombardo and A. Trunin, Topology and axions in QCD, Int. J. Mod. Phys. A 35 no. 20, (2020) 2030010, arXiv:2005.06547 [hep-lat].
[90] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.
[91] F. Wilczek, Problem of Strong 𝑃 and 𝑇 Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279–282.
[92] Z. G. Berezhiani and M. Y. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73–78.
[93] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.
[94] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493–506.
[95] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202.
[96] A. Hook, S. Kumar, Z. Liu, and R. Sundrum, High Quality QCD Axion and the LHC, Phys. Rev. Lett. 124 no. 22, (2020) 221801, arXiv:1911.12364 [hep-ph].
[97] K. J. Kelly, S. Kumar, and Z. Liu, Heavy Axion Opportunities at the DUNE Near Detector, arXiv:2011.05995 [hep-ph].
[98] H. Georgi, D. B. Kaplan, and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett. B 169 (1986) 73–78.
[99] I. Brivio, M. Gavela, L. Merlo, K. Mimasu, J. No, R. del Rey, and V. Sanz, ALPs Effective Field Theory and Collider Signatures, Eur. Phys. J. C 77 no. 8, (2017) 572, arXiv:1701.05379 [hep-ph].
[100] A. Salvio, A. Strumia, and W. Xue, Thermal axion production, JCAP 01 (2014) 011, arXiv:1310.6982 [hep-ph].
[101] Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama, and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 no. 11, (2018) 115031, arXiv:1806.10139 [hep-ph].
[102] K. Mimasu and V. Sanz, ALPs at Colliders, JHEP 06 (2015) 173, arXiv:1409.4792 [hep-ph].
[103] J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482–487, arXiv:1509.00476 [hep-ph].
[104] A. Alves, A. G. Dias, and K. Sinha, Diphotons at the 𝑍-pole in Models of the 750 GeV Resonance Decaying to Axion-Like Particles, JHEP 08 (2016) 060, arXiv:1606.06375 [hep-ph].
[105] M. J. Dolan, F. Kahlhoefer, C. McCabe, and K. Schmidt-Hoberg, A taste of dark matter: Flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171, arXiv:1412.5174 [hep-ph]. [Erratum: JHEP 07, 103 (2015)].
[106] E. Izaguirre, T. Lin, and B. Shuve, Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 no. 11, (2017) 111802, arXiv:1611.09355 [hep-ph].
[107] K. Choi, K. Kang, and J. E. Kim, Effects of 𝜂 ′ in low-energy axion physics, Physics Letters B 181 no. 1, (1986) 145–149. https: //www.sciencedirect.com/science/article/pii/0370269386912736.
[108] A. Salvio and S. Scollo, Axion-Sterile-Neutrino Dark Matter, arXiv:2104.01334 [hep-ph].
[109] A. Salvio, A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos, Phys. Lett. B 743 (2015) 428–434, arXiv:1501.03781 [hep-ph].
[110] A. Alves, A. G. Dias, and D. D. Lopes, Probing alp-sterile neutrino couplings at the lhc, arXiv:1911.12394 [hep-ph].
[111] A. Atre, T. Han, S. Pascoli, and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030, arXiv:0901.3589 [hep-ph].
[112] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.
[113] N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo, and J. Isern, New axion and hidden photon constraints from a solar data global fit, JCAP 10 (2015) 015, arXiv:1501.01639 [astro-ph.SR].
[114] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51–71, arXiv:hep-ph/0611350.
[115] A. Friedland, M. Giannotti, and M. Wise, Constraining the Axion-Photon Coupling with Massive Stars, Phys. Rev. Lett. 110 no. 6, (2013) 061101, arXiv:1210.1271 [hep-ph].
[116] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 no. 19, (2014) 191302, arXiv:1406.6053 [astro-ph.SR].
[117] CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at √ 𝑠 = 8 TeV, Eur. Phys. J. C 75 no. 5, (2015) 235, arXiv:1408.3583 [hep-ex].
[118] ATLAS Collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ 𝑠 =8 TeV with the ATLAS detector, Eur. Phys. J. C 75 no. 7, (2015) 299, arXiv:1502.01518 [hep-ex]. [Erratum: Eur.Phys.J.C 75, 408 (2015)].
[119] G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev. D 94 no. 7, (2016) 073009, arXiv:1512.04119 [hep-ph].
[120] J. D. Clarke, R. Foot, and R. R. Volkas, Phenomenology of a very light scalar (100 MeV < 𝑚ℎ < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123, arXiv:1310.8042 [hep-ph].
[121] XENON100 Collaboration, E. Aprile et al., First Axion Results from the XENON100 Experiment, Phys. Rev. D 90 no. 6, (2014) 062009, arXiv:1404.1455 [astro-ph.CO]. [Erratum: Phys.Rev.D 95, 029904 (2017)].
[122] N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo, A. A. R. Valcarce, and A. Weiss, Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301, arXiv:1311.1669 [astro-ph.SR].
[123] O. Rodríguez-Tzompantzi, Conserved laws and dynamical structure of axions coupled to photons, Int. J. Mod. Phys. A 36 no. 33, (2021) 2150259, arXiv:2001.07101 [hep-th].
[124] CAST Collaboration, V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584–590, arXiv:1705.02290 [hep-ex].
[125] M. Bauer, M. Heiles, M. Neubert, and A. Thamm, Axion-Like Particles at Future Colliders, Eur. Phys. J. C 79 no. 1, (2019) 74, arXiv:1808.10323 [hep-ph].
[126] N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo, and J. Isern, New axion and hidden photon constraints from a solar data global fit, Journal of Cosmology and Astroparticle Physics 2015 no. 10, (2015) 015.
[127] BaBar Collaboration, J. P. Lees et al., Search for an Axionlike Particle in 𝐵 Meson Decays, Phys. Rev. Lett. 128 no. 13, (2022) 131802, arXiv:2111.01800 [hep-ex].
[128] E787 Collaboration, S. Adler et al., Further search for the decay K+ —> pi+ nu anti-nu in the momentum region P < 195-MeV/c, Phys. Rev. D 70 (2004) 037102, arXiv:hep-ex/0403034.
[129] CHARM Collaboration, F. Bergsma et al., Search for Axion Like Particle Production in 400-GeV Proton - Copper Interactions, Phys. Lett. B 157 (1985) 458–462.
[130] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300, arXiv:1310.1921 [hep-ph].
[131] A. Belyaev, N. D. Christensen, and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769, arXiv:1207.6082 [hep-ph].
[132] C. Boehm, M. J. Dolan, C. McCabe, M. Spannowsky, and C. J. Wallace, Extended gamma-ray emission from Coy Dark Matter, JCAP 05 (2014) 009, arXiv:1401.6458 [hep-ph].
[133] M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009, arXiv:1012.5317 [hep-ph].
[134] H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with Nucleons, JHEP 07 (2012) 009, arXiv:1202.1292 [hep-ph].
[135] S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. Goudelis, and B. Zaldivar, Cornering pseudoscalar-mediated dark matter with the LHC and cosmology, JHEP 07 (2017) 080, arXiv:1705.02327 [hep-ph].
[136] G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380.
[137] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175.
[138] D. Hooper and S. Profumo, Dark Matter and Collider Phenomenology of Universal Extra Dimensions, Phys. Rept. 453 (2007) 29–115, arXiv:hep-ph/0701197.
[139] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.
[140] C. P. Burgess, M. Pospelov, and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.
[141] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028, arXiv:hep-ph/0612275.
[142] R. Barbieri, L. J. Hall, and V. S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007, arXiv:hep-ph/0603188.
[143] L. Lopez-Honorez, T. Schwetz, and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179–185, arXiv:1203.2064 [hep-ph].
[144] N. Okada and S. Okada, 𝑍 ′ -portal right-handed neutrino dark matter in the minimal U(1)𝑋 extended Standard Model, Phys. Rev. D 95 no. 3, (2017) 035025, arXiv:1611.02672 [hep-ph].
[145] P. Bandyopadhyay, E. J. Chun, and R. Mandal, Implications of right-handed neutrinos in 𝐵 − 𝐿 extended standard model with scalar dark matter, Phys. Rev. D 97 no. 1, (2018) 015001, arXiv:1707.00874 [hep-ph].
[146] A. Das, S. Goswami, K. N. Vishnudath, and T. Nomura, Constraining a general U(1)′ inverse seesaw model from vacuum stability, dark matter and collider, Phys. Rev. D 101 no. 5, (2020) 055026, arXiv:1905.00201 [hep-ph].
[147] A. Das, S. Oda, N. Okada, and D.-s. Takahashi, Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds, Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].
[148] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301, arXiv:hep-ph/0601225.
[149] M. Hirsch, R. A. Lineros, S. Morisi, J. Palacio, N. Rojas, and J. W. F. Valle, WIMP dark matter as radiative neutrino mass messenger, JHEP 10 (2013) 149, arXiv:1307.8134 [hep-ph].
[150] A. Merle, M. Platscher, N. Rojas, J. W. F. Valle, and A. Vicente, Consistency of WIMP Dark Matter as radiative neutrino mass messenger, JHEP 07 (2016) 013, arXiv:1603.05685 [hep-ph].
[151] I. M. Ávila, V. De Romeri, L. Duarte, and J. W. F. Valle, Phenomenology of scotogenic scalar dark matter, Eur. Phys. J. C 80 no. 10, (2020) 908, arXiv:1910.08422 [hep-ph].
[152] S. Mandal, R. Srivastava, and J. W. F. Valle, The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability, Phys. Lett. B 819 (2021) 136458, arXiv:2104.13401 [hep-ph].
[153] S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, Dark matter as the origin of neutrino mass in the inverse seesaw mechanism, Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
[154] D. Feldman, Z. Liu, P. Nath, and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017, arXiv:1004.0649 [hep-ph].
[155] H. Baer, A. Lessa, S. Rajagopalan, and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031, arXiv:1103.5413 [hep-ph].
[156] M. Aoki, M. Duerr, J. Kubo, and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015, arXiv:1207.3318 [hep-ph].
[157] S. Bhattacharya, A. Drozd, B. Grzadkowski, and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158, arXiv:1309.2986 [hep-ph].
[158] L. Bian, R. Ding, and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105–113, arXiv:1308.3851 [hep-ph].
[159] Y. Kajiyama, H. Okada, and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 no. 1, (2013) 015029, arXiv:1303.7356 [hep-ph].
[160] S. Esch, M. Klasen, and C. E. Yaguna, A minimal model for two-component dark matter, JHEP 09 (2014) 108, arXiv:1406.0617 [hep-ph].
[161] S. Bhattacharya, P. Poulose, and P. Ghosh, Multipartite Interacting Scalar Dark Matter in the light of updated LUX data, JCAP 04 (2017) 043, arXiv:1607.08461 [hep-ph].
[162] S. Bhattacharya, P. Ghosh, A. K. Saha, and A. Sil, Two component dark matter with inert Higgs doublet: neutrino mass, high scale validity and collider searches, JHEP 03 (2020) 090, arXiv:1905.12583 [hep-ph].
[163] S. Bhattacharya, N. Chakrabarty, R. Roshan, and A. Sil, Multicomponent dark matter in extended 𝑈(1)𝐵−𝐿: neutrino mass and high scale validity, JCAP 04 (2020) 013, arXiv:1910.00612 [hep-ph].
[164] S. Bhattacharya, P. Ghosh, T. N. Maity, and T. S. Ray, Mitigating Direct Detection Bounds in Non-minimal Higgs Portal Scalar Dark Matter Models, JHEP 10 (2017) 088, arXiv:1706.04699 [hep-ph].
[165] B. Díaz Sáez, P. Escalona, S. Norero, and A. R. Zerwekh, Fermion singlet dark matter in a pseudoscalar dark matter portal, JHEP 10 (2021) 233, arXiv:2105.04255 [hep-ph].
[166] A. Mohamadnejad, Electroweak phase transition and gravitational waves in a two-component dark matter model, arXiv:2111.04342 [hep-ph].
[167] CMS Collaboration, A. M. Sirunyan et al., Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at √ 𝑠 = 13 TeV, Phys. Lett. B 793 (2019) 520–551, arXiv:1809.05937 [hep-ex].
[168] ATLAS Collaboration, M. Aaboud et al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 no. 23, (2019) 231801, arXiv:1904.05105 [hep-ex].
[169] V. D. Barger, W.-Y. Keung, and E. Ma, Doubling of Weak Gauge Bosons in an Extension of the Standard Model, Phys. Rev. Lett. 44 (1980) 1169.
[172] D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, Fusing Vectors into Scalars at High Energy Lepton Colliders, JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
[173] K. Mekala, A. F. Zarnecki, B. Grzadkowski, and M. Iglicki, Searches for invisible scalar decays at CLIC, in 28th International Workshop on Deep Inelastic Scattering and Related Subjects. 7, 2021. arXiv:2107.13903 [hep-ex].
[174] PandaX-II Collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 no. 12, (2016) 121303, arXiv:1607.07400 [hep-ex].
[175] F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, arXiv:1503.04200 [hep-ph].
[176] G. Belanger, A. Mjallal, and A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios, Eur. Phys. J. C 81 no. 3, (2021) 239, arXiv:2003.08621 [hep-ph].
[177] G. Belanger, K. Kannike, A. Pukhov, and M. Raidal, Impact of semi-annihilations on dark matter phenomenology - an example of 𝑍𝑁 symmetric scalar dark matter, JCAP 04 (2012) 010, arXiv:1202.2962 [hep-ph].
[178] Q.-H. Cao, E. Ma, J. Wudka, and C. P. Yuan, Multipartite dark matter, arXiv:0711.3881 [hep-ph].
[180] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025, arXiv:1306.4710 [hep-ph]. [Erratum: Phys.Rev.D 92, 039906 (2015)].
[181] G. Arcadi, S. Profumo, F. S. Queiroz, and C. Siqueira, Right-handed Neutrino Dark Matter, Neutrino Masses, and non-Standard Cosmology in a 2HDM, JCAP 12 (2020) 030, arXiv:2007.07920 [hep-ph].
[182] LUX Collaboration, D. S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].
[183] PandaX-II Collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 no. 12, (2016) 121303, arXiv:1607.07400 [hep-ex].
[184] M. Schumann, Direct detection of WIMP dark matter: concepts and status, Journal of Physics G: Nuclear and Particle Physics 46 no. 10, (Aug, 2019) 103003. https://doi.org/10.1088%2F1361-6471%2Fab2ea5.
[185] C. Gross, O. Lebedev, and T. Toma, Cancellation mechanism for dark-matter–nucleon interaction, Physical Review Letters 119 no. 19, (Nov, 2017) . https://doi.org/10.1103%2Fphysrevlett.119.191801.
[186] Y. Abe, T. Toma, and K. Tsumura, Pseudo-nambu-goldstone dark matter from gauged u(1)b-l symmetry, Journal of High Energy Physics 2020 no. 5, (May, 2020) . https://doi.org/10.1007%2Fjhep05%282020%29057.
[187] Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, Pseudo-nambu-goldstone dark matter model inspired by grand unification, Physical Review D 104 no. 3, (Aug, 2021) . https://doi.org/10.1103%2Fphysrevd.104.035011.
[188] S. Gola, S. Mandal, and N. Sinha, ALP-portal majorana dark matter, Int. J. Mod. Phys. A 37 no. 22, (2022) 2250131, arXiv:2106.00547 [hep-ph].
[189] N. Okada, D. Raut, and Q. Shafi, Pseudo-goldstone dark matter in a gauged 𝑏 − 𝑙 extended standard model, Physical Review D 103 no. 5, (Mar, 2021). https://doi.org/10.1103%2Fphysrevd.103.055024.
[190] S. Oda, N. Okada, and D. suke Takahashi, Classically conformal u(1)′ extended standard model and higgs vacuum stability, Physical Review D 92 no. 1, (Jul, 2015). https://doi.org/10.1103%2Fphysrevd.92.015026.
[191] A. Das, N. Okada, S. Okada, and D. Raut, Probing the seesaw mechanism at the 250 GeV ILC, Physics Letters B 797 (Oct, 2019) 134849. https://doi.org/10.1016%2Fj.physletb.2019.134849.
[192] A. Das, S. Mandal, T. Nomura, and S. Shil, Heavy majorana neutrino pair production from z‘ at hadron and lepton colliders, Physical Review D 105 no. 9, (May, 2022) . https://doi.org/10.1103%2Fphysrevd.105.095031.
[193] N. Darvishi, M. Masouminia, and A. Pilaftsis, Maximally symmetric three-higgs-doublet model, Physical Review D 104 no. 11, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevd.104.115017.
[194] T. Robens, T. Stefaniak, and J. Wittbrodt, Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios, The European Physical Journal C 80 no. 2, (Feb, 2020) . https://doi.org/10.1140%2Fepjc%2Fs10052-020-7655-x.
[195] K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093, arXiv:1205.3781 [hep-ph].
[196] A. Djouadi, The anatomy of electroweak symmetry breaking, Physics Reports 457 no. 1-4, (Feb, 2008) 1–216. https://doi.org/10.1016%2Fj.physrep.2007.10.004.
[197] ATLAS Collaboration, A. et.al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment,.
[198] K. Ishiwata and T. Toma, Probing pseudo nambu-goldstone boson dark matter at loop level, Journal of High Energy Physics 2018 no. 12, (Dec, 2018) . https://doi.org/10.1007%2Fjhep12%282018%29089.
[199] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579–588.
[200] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.
This paper is available on arxiv under CC BY 4.0 DEED license.
Author:
(1) Shivam Gola, The Institute of Mathematical Sciences, Chennai.